3 resultados para Transgenerational inheritance
em Aquatic Commons
Resumo:
This article discusses problems of modelling the seasonal succession of algal species in lakes and reservoirs, and the adaptive selection of certain groups of algae in response to changes in the inputs and relative concentrations of nutrients and other environmental variables. A new generation of quantitative models is being developed which attempts to translate some important biological properties of species (survival, variation, inheritance, reproductive rates and population growth) into predictions about the survival of the fittest, where ”fitness” is measured or estimated in thermodynamic terms. The concept of ”exergy” and its calculation is explored to examine maximal exergy as a measure of fitness in ecosystems, and its use for calculating changes in species composition by means of structural dynamic models. These models accomodate short-term changes in parameters that affect the adaptive responses (species selection) of algae.
Resumo:
Determining patterns of population connectivity is critical to the evaluation of marine reserves as recruitment sources for harvested populations. Mutton snapper (Lutjanus analis) is a good test case because the last known major spawning aggregation in U.S. waters was granted no-take status in the Tortugas South Ecological Reserve (TSER) in 2001. To evaluate the TSER population as a recruitment source, we genotyped mutton snapper from the Dry Tortugas, southeast Florida, and from three locations across the Caribbean at eight microsatellite loci. Both Fstatistics and individual-based Bayesian analyses indicated that genetic substructure was absent across the five populations. Genetic homogeneity of mutton snapper populations is consistent with its pelagic larval duration of 27 to 37 days and adult behavior of annual migrations to large spawning aggregations. Statistical power of future genetic assessments of mutton snapper population connectivity may benefit from more comprehensive geographic sampling, and perhaps from the development of less polymorphic DNA microsatellite loci. Research where alternative methods are used, such as the transgenerational marking of embryonic otoliths with barium stable isotopes, is also needed on this and other species with diverse life history characteristics to further evaluate the TSER as a recruitment source and to define corridors of population connectivity across the Caribbean and Florida.
Resumo:
China has a very rich genetic diversity in common carp (Cyprinus carpio) and the red common carp plays an important role in Chinese aquaculture and genetic studies. Selective breeding, particularly crossbreeding has been applied successfully to red common carps in China, and the products of these efforts have been in commercial use since the 1970s. However, knowledge of the quantitative and molecular genetics of these carps is limited. Studies were therefore undertaken to: (1) understand the genetic diversity and genetic relationship of red common carps in China; (2) understand the inheritance of color phenotype of Oujiang color carp; (3) select stable Oujiang color carp with fast growth rate and ornamental Oujiang color carp comparable with the Koi common carp from Japan; (4) study the culture performance and culture systems suitable for the Oujiang color carp in cages and paddies; (5) extend better quality fish and appropriate culture systems for small scale fish farmers in poor areas.