4 resultados para Transcription, Genetic -- drug effects
em Aquatic Commons
Resumo:
The alkaloid drug colchicine is a mitotic inhibitor. The results of this study show that colchicine influence the normal functioning of the mitotic process in Sarotherodon galilaeus, S. melanotheron and the hybrid S. galilaeus, X S. melanotheron leading to the production of unusual chromosomal events such as anaphase bridges, laggards and polyploid cells. These unusual events could have serious genetic implications in the area of variability of the chromosome number. The use of colchicine also produces results with consistent karyotypes and better morphology as well as providing detailed information on the behaviour of the chromosome of the early life of fish. The knowledge of such information will be of great use in cytotaxonomy, fish breeding and in studying the effects of sub-lethal levels of water pollutants on fish
Resumo:
Preservation of marine biodiversity deserves serious consideration as almost 65% of the earth's organisms (excluding insects) are marine. There is little knowledge at present on the status of marine biodiversity. However, the seas are an important source of protein for human consumption and genetic diversity is a key factor in ecosystem functioning, stability and resilience. Overfishing and destructive practices may have unalterable impact on marine biodiversity. This paper discusses measures that can be adopted to protect the most productive areas of the marine ecosystem.
Resumo:
Selection experiments with the herbivorous blunt snout bream or Wuchang bream (Megalobrama amblycephala) were started in 1985. Mass selection for size and length/depth ratio resulted in a significant increase in growth and better shape, while inbreeding led to a significant decrease in growth. The total selection ratio from fry to mature brooders was about 0.03 per cent per generation. In the grow out stage, the average daily body weight gains of two lines of fifth generation (F5) fish were 29 per cent and 20 per cent respectively more than the control group, with an average of 5.8 per cent and 4 per cent improvements per generation, respectively. The body was 4 per cent deeper in ratio of standard length/body depth. The effects of inbreeding were examined by crossing full-sibs, the offspring of which were kept without selection. The third generation inbred fish showed 17 per cent lower growth as compared to the control group, with an average of 7.5 per cent per generation. The results demonstrate that selection is a powerful tool to improve the economic traits of the blunt snout bream, but inbreeding can rapidly lead to a reduction in performance. In 2000, the 6th generation of selected bream was certified by the Chinese Ministry of Agriculture as a good breed for aquaculture.
Resumo:
Abstract—Fisheries often target individuals based on size. Size-selective fishing can create selection differentials on life-history traits and, when those traits have a genetic basis, may cause evolution. The evolution of life history traits affects potential yield and sustainability of fishing, and it is therefore an issue for fishery management. Yet fishery managers usually disregard the possibility of evolution, because little guidance is available to predict evolutionary consequences of management strategies. We attempt to provide some generic guidance. We develop an individual-based model of a population with overlapping generations and continuous reproduction. We simulate model populations under size-selective fishing to generate and quantify selection differentials on growth. The analysis comprises a variety of common life-history and fishery characteristics: variability in growth, correlation between von Bertalanffy growth parameters (K and L∞), maturity rate, natural mortality rate (M), M/K ratio, duration of spawning season, fishing mortality rate (F), maximum size limit, slope of selectivity curve, age at 50% selectivity, and duration of fishing season. We found that each characteristic affected the magnitude of selection differentials. The most vulnerable stocks were those with a short spawning or fishing season. Under almost all life-history and fishery characteristics examined, selection differentials created by realistic fishing mortality rates are considerable.