17 resultados para Toxic disorders
em Aquatic Commons
Resumo:
(PDF contains 300 pages)
Resumo:
This study examines acute toxicity of Raphia vinifera on fish leech, Piscicola geometra. The leeches with a mean total length of (TL) 4.2+1.0cm were exposed to various concentrations of both crude powdered and ethanolic extracts of the botanical. Median lethal concentration (LC50) was determined with static-renewal tests using logarithmic and arithmetic graphic methods. The LC50 (for 96 hours of crude powdered (aqueous) extracts of the botanical on Piscicola geometra was 1.10 ppm arithmetically and 1.14ppm logarithmically. The 95% confidence limits was 0.10ppm arithmetically and 0.12ppm logarithmically. The LC50 of ethanolic extract of the poison at 96-h was 0.5ppm arithmetically and 0.48ppm logarithmically. The 95% confidence limits were less than 0.10ppm. The use of extracts of R. vinifera in the control of leeches in fish ponds is discussed
Resumo:
The incidence of blue-green algal blooms and surface scum-formation are certainly not new phenomena. Many British and European authors have been faithfully describing the unmistakable symptoms of blue-green algal scums for over 800 years. There is no disputing that blue-green algal toxins are extremely harmful. Three quite separate categories of compound have been separated: neurotoxins; hepatotoxins and lipopolysaccharides. There is a popular association between blue-green algae and eutrophication. Certainly the main nuisance species - of Microcystis, Anabaena and Aphanizomenon are rare in oligotrophic lakes and reservoirs. Several approaches have been proposed for the control of blue-green algae. Distinction is made between methods for discharging algae already present (eg algicides; straw bales; viruses; parasitic fungi and herbivorous ciliates), and methods for averting an anticipated abundance in the future (phosphorous control, artificial circulation etc).
Resumo:
The author explains some aspects of sampling phytoplankton blooms and the evaluation of results obtained from different methods. Qualitative and quantitative sampling is covered as well as filtration, freeze-drying and toxin separation.
Resumo:
Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic CYP1A induction has been used extensively and successfully as a biomarker of organic contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited inducibility and some potential for biomarker application is indicated. Stimulation of reactive oxygen species (ROS) production is another potential mechanism of organic contaminant-mediated DNA and other damage in aquatic organisms. A combination of antioxidant (enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) measurements may have potential as a biomarker of organic contaminant exposure (particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher order deleterious effects, including cancer and other aspects of animal fitness.
Resumo:
In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.
Resumo:
Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.
Resumo:
Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42:170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we conducted food removal experiments using the cosmopolitan copepod grazer Acartia tonsa. Wild-caught, adult female A. tonsa were exposed to 6 monoalgal or mixed algal diets made using bloom concentrations of toxic (CCMP 2064) and non-toxic (CSIC1) strains of K. veneficum. Ingestion and clearance rates were calculated using the equations of Frost (1972). Exposure to the toxic strain of K. veneficum did not contribute to an increased mortality of the copepods and no significant differences in copepod mortality were found among the experimental diets. However, A. tonsa had significantly greater clearance and ingestion rates when exposed to a monoalgal diet of the non-toxic strain CSIC1 than when exposed to the monoalgal diet of toxic strain CCMP 2064 and mixed diets dominated by this toxic strain. These results support the hypothesis that karlotoxins in certain strains of K. veneficum deter grazing by potential predators and contribute to the formation and continuation of blooms.
Resumo:
One of the chalkones synthesised in the author's laboratory was selected to determine its toxicity to fish, Lepidocephalicthys thermalis at different concentrations and time periods. Ascorbic acid contents were determined and it was found to be antitoxic.
Resumo:
Concentration of toxic metals namely Zn, Cu, Fe, Cd and Pb in the marine benthos off Bombay Coast, Maharashtra (India) was estimated. Maximum concentration of Zn, Fe and Pb was from the organisms of Thana Creek. Higher concentration of Cu was encountered in benthic organisms off Versova. Cd was detected in some organisms and was maximum in the organisms collected from Mahim.
Resumo:
The present communication deals with the feeding trials of brown (Sargassum bovianum), green (Caulerpa faridii) and red (Gracilaria corticola) seaweeds in albino rats for a period of thirty days in order to investigate their digestibility and acceptability as supplementary food for animals. The parameters used were: changes in blood hemoglobin, ESR, MCHC, PCV and plasma vitamin levels. The result revealed that all the three species of seaweeds had acceptability up to 5% level, as no ill effect was noted during the experiment. But at 10% and 20% levels, marked changes were observed in blood parameters with diarrhea, vomiting and convulsions indicating possibilities of either tissue and muscular dystrophy, gastrointestinal tract necrosis or functional disorder of central nervous system. A heavy mortality was noted due to excessive water loss through diarrhea and vomiting. However, no mortality was observed after 22nd day at both 10% and 20% levels with subsided clinical signs. The results suggest that these three seaweed species could be used safely as a supplementary food, in native form, in animals at low concentrations.
Resumo:
The toxic effects of dimecron on growth, body composition and oxygen consumption of fingerlings of Labeo rohita were studied. Dimecron concentrations of 4 and 8 mg/l were used. Both acute (3-h) and chronic (15- 42 d) exposure schedules were followed. Compared with the control fish, both 4 and 8 mg/l dimecron treatment significantly suppressed weight gained in fish by 9.71% and 30% respectively during a 42 day exposure period. However, the length of fish was suppressed by 11.46% significantly only in fish group exposed to 8 mg/l dimecron. Similarly, the protein content was also significantly reduced in the above group of fish. The oxygen consumption of fish was elevated considerably, but not significantly in both group of treated fish (8.5% and 26.07%) during acute exposure. However, after 15 days of exposure the rate decreased by 18.98% significantly only in fish exposed to 8 mg/l dimecron. The threshold level of DO at low oxygen environment found to be slightly higher in fish at 8 mg/l dimecron. The survival time at the above oxygen condition was reduced during acute exposure (3-h) and that was extended during chronic (15-d) exposure.
Resumo:
The exposure to the highest dimecron cone. (8 mg/1) resulted in severe histopathological changes in different tissues of Labeo rohita fingerling. Cell necrosis, cytoplasmic vacuolation and pycnotic nuclei were major abnormalities observed in liver tissue. The degeneration of glomeruli and proximal tubules, cytoplasmic vacuolation and focal haemorrhagic area were noted in case of kidney tissues. Major changes observed in intestinal tissues were degeneration of villi, disintegrity of mucosal layers, necrosis of epithelial cells etc. However, hypertrophy of cells and granulation of cytoplasm were major histopathological changes observed in fish at lower dimecron cones. (4 mg/1).