32 resultados para Timing of Vaccination
em Aquatic Commons
Resumo:
Acoustic recorders were used to document black drum (Pogonias cromis) sound production during their spawning season in southwest Florida. Diel patterns of sound production were similar to those of other sciaenid fishes and demonstrated increased sound levels from the late afternoon to early evening—a period that lasted up to 12 hours during peak season. Peak sound production occurred from January through March when water temperatures were between 18° and 22°C. Seasonal trends in sound production matched patterns of black drum reproductive readiness and spawning reported previously for populations in the Gulf of Mexico. Total acoustic energy of nightly chorus events was estimated by integration of the sound pressure amplitude with duration above a threshold based on daytime background levels. Maximum chorus sound level was highly correlated with total acoustic energy and was used to quantitatively represent nightly black drum sound production. This study gives evidence that long-term passive acoustic recordings can provide information on the timing and location of black drum reproductive behavior that is similar to that provided by traditional, more costly methods. The methods and results have broad application for the study of many other fish species, including commercially and recreationally valuable reef fishes that produce sound in association with reproductive behav
Resumo:
Settled juvenile blue rockfish (Sebastes mystinus) were collected from two kelp beds approximately 335 km apart off Mendocino in northern California and Monterey in central California. A total of 112 rockfish were collected from both sites over 5 years (1993, 1994, 2001, 2002, and 2003). Total age, settlement date, age at settlement, and birth date were determined from otolith microstructure. Fish off Mendocino settled mostly in June and fish off Monterey settled mostly in May (average difference in settlement=23 days). Although the difference in the timing of settlement followed this same pattern for both areas over the five years, settlement occurred later in 2002 and 2003 than in the prior years of sampling. The difference in the timing of settlement was due primarily to differences in birth dates for the two areas. The time of settlement was positively related to upwelling and negatively related to sea level anomaly for most of the months before settlement. Knowledge of the timing of settlement has implications for design and placement of marine protected areas because protection of nursery grounds is frequently a major objective of these protected areas. The timing of settlement is also an important consideration in the planning of surveys of early recruits because mistimed surveys (caused by latitudinal differences in the timing of settlement) could produce biased estimates.
Resumo:
Streamer tags are commonly used to study the ecology and population biology of the American lobster (Homarus americanus). Aquarium observations suggest that streamer tag loss, either through tag-induced mortality or tag shedding, is related to the molt stage of the lobster at the time of tagging, and the molting event itself. Tag-induced mortality, where lobsters did not molt, occurred within eleven and sixteen days following tagging for lobsters tagged in postmolt (4%) and late premolt (10%) stages, respectively; whereas no lobsters tagged in early premolt or intermolt stages died. Taginduced mortality at time of molting was observed for lobsters tagged in late premolt stage (11%), and tag shedding was observed for lobsters tagged both in early (25%) and late premolt (11%) stages, but was significantly higher (P=0.014) for lobsters tagged in early premolt stages. Autopsies revealed that lobsters died mainly of organ perforations (hepato-pancreas and pericardial sac) following the tagging process, and rupture of the dorsal thoraco-abdominal membrane during the molting process. The total tag loss was estimated at 4% for lobsters tagged after molting, and 27% and 31% for lobsters tagged in early and late premolt stages, respectively. There was no tag loss for lobsters tagged in the intermolt stage during four months of laboratory observations (July−October). To minimize streamer tag loss, lobsters should be tagged during the intermolt or postmolt stage. Based on field studies, recapture rates for lobsters tagged in premolt stage are always lower than those of lobsters tagged in postmolt stage. Furthermore, recapture rates during the second year, for lobsters that molt in the year following tagging, were drastically reduced, and no lobster was recaptured after four years at large. Finally, to account for tag loss during the first year at large, a minimal adjustment of 24.9% (SD 2.9%) and 4.4% (SD 1.6%) for the recapture rate of lobsters tagged immediately before and after the molting season, respectively, is recommended. Adjustments beyond one year at large are not recommended for the American lobster at this time.
Resumo:
The sectioned otoliths of four fish species from a tropical demersal trawl fishery in Western Australia revealed a series of alternating trans-lucent and opaque zones in reflected light. The translucent zones, referred to as growth rings, were counted to determine fish ages. The width of the opaque zone on the periphery of the otolith section as a proportion of the width of the previous opaque zone (index of completion) was used to determine the periodicity of growth-ring formation. This article describes a method for modeling changes in the index of ring completion over time, from which a parameter for the most probable time of growth-ring formation (with confidence intervals) can be determined. The parameter estimate for the timing of new growth-ring formation for Lethrinus sp. 3 was from mid July to mid September, for Lutjanus vitta from early July to the end of August, for Nemipterus furcosus from mid July to late September, and for Lutjanus sebae from mid July to mid November. The confidence intervals for the timing of formation of growth rings was variable between species, being smallest for L. vitta, and variable between fish of the same species with different numbers of growth rings. The stock assessments of these commercially important species relies on aging information for all the age classes used in the assessment. This study demonstrated that growth rings on sectioned otoliths were laid down annually, irrespective of the number of growth rings, and also demonstrated that the timing of ring formation for these tropical species can be determined quantitatively (with confidence intervals.
Resumo:
Maternal effects on the quality of progeny can have direct impacts on population productivity. Rockfish are viviparous and the oil globule size of larvae at parturition has been shown to have direct effects on time until starvation and growth rate. We sampled embryos and preparturition larvae opportunistically from 89 gravid quillback rockfish (Sebastes maliger) in Southeast Alaska. Because the developmental stage and sampling period were correlated with oil globule size, they were treated as covariates in an analysis of maternal age, length, and weight effects on oil globule size. Maternal factors were related to developmental timing for almost all sampling periods, indicating that older, longer, and heavier females develop embryos earlier than younger, shorter, or lighter ones. Oil globule diameter and maternal length and weight were statistically linked, but the relationships may not be biologically significant. Weight-specific fecundity did not increase with maternal size or age, suggesting that reproductive output does not increase more quickly as fish age and grow. Age or size truncation of a rockfish population, in which timing of parturition is related to age and size, could result in a shorter parturition season. This shortening of the parturition season could make the population vulnerable to fluctuating environmental conditions.
Resumo:
The timing and duration of the reproductive cycle of Atka mackerel (Pleurogrammus monopterygius) was validated by using observations from time-lapse video and data from archival tags, and the start, peak, and end of spawning and hatching were determined from an incubation model with aged egg samples and empirical incubation times ranging from 44 days at a water temperature of 9.85°C to 100 days at 3.89°C. From June to July, males ceased diel vertical movements, aggregated in nesting colonies, and established territories. Spawning began in late July, ended in mid-October, and peaked in early September. The male egg-brooding period that followed continued from late November to mid-January and duration was highly dependent on embryonic development as affected by ambient water temperature. Males exhibited brooding behavior for protracted periods at water depths from 23 to 117 m where average daily water temperatures ranged from 4.0° to 6.2°C. Knowledge about the timing of the reproductive cycle provides a framework for conserving Atka mackerel populations and investigating the physical and biological processes influencing recruitment.
Resumo:
I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document)
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Resumo:
Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton. Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.)
Resumo:
Rising global temperatures threaten the survival of many plant and animal species. Having already risen at an unprecedented rate in the past century, temperatures are predicted to rise between 0.3 and 7.5C in North America over the next 100 years (Hawkes et al. 2007). Studies have documented the effects of climate warming on phenology (timing of seasonal activities), with observations of early arrival at breeding grounds, earlier ends to the reproductive season, and delayed autumnal migrations (Pike et al. 2006). In addition, for species not suited to the physiological demands of cold winter temperatures, increasing temperatures could shift tolerable habitats to higher latitudes (Hawkes et al. 2007). More directly, climate warming will impact thermally sensitive species like sea turtles, who exhibit temperature-dependent sexual determination. Temperatures in the middle third of the incubation period determine the sex of sea turtle offspring, with higher temperatures resulting in a greater abundance of female offspring. Consequently, increasing temperatures from climate warming would drastically change the offspring sex ratio (Hawkes et al. 2007). Of the seven extant species of sea turtles, three (leatherback, Kemp’s ridley, and hawksbill) are critically endangered, two (olive ridley and green) are endangered, and one (loggerhead) is threatened. Considering the predicted scenarios of climate warming and the already tenuous status of sea turtle populations, it is essential that efforts are made to understand how increasing temperatures may affect sea turtle populations and how these species might adapt in the face of such changes. In this analysis, I seek to identify the impact of changing climate conditions over the next 50 years on the availability of sea turtle nesting habitat in Florida given predicted changes in temperature and precipitation. I predict that future conditions in Florida will be less suitable for sea turtle nesting during the historic nesting season. This may imply that sea turtles will nest at a different time of year, in more northern latitudes, to a lesser extent, or possibly not at all. It seems likely that changes in temperature and precipitation patterns will alter the distribution of sea turtle nesting locations worldwide, provided that beaches where the conditions are suitable for nesting still exist. Hijmans and Graham (2006) evaluate a range of climate envelope models in terms of their ability to predict species distributions under climate change scenarios. Their results suggested that the choice of species distribution model is dependent on the specifics of each individual study. Fuller et al. (2008) used a maximum entropy approach to model the potential distribution of 11 species in the Arctic Coastal Plain of Alaska under a series of projected climate scenarios. Recently, Pike (in press) developed Maxent models to investigate the impacts of climate change on green sea turtle nest distribution and timing. In each of these studies, a set of environmental predictor variables (including climate variables), for which ‘current’ conditions are available and ‘future’ conditions have been projected, is used in conjunction with species occurrence data to map potential species distribution under the projected conditions. In this study, I will take a similar approach in mapping the potential sea turtle nesting habitat in Florida by developing a Maxent model based on environmental and climate data and projecting the model for future climate data. (PDF contains 5 pages)
Resumo:
There are two main ways in which gravel composition and changes therein arising from siltation, can influence the survival of young salmonids. First, the composition of the gravel will affect its permeability and, hence, may influence the survival of eggs and alevins through its effect upon the rate of supply of oxygen and the rate of removal of metabolic products. Second, the composition of the gravel may affect the ease, or otherwise, of emergence at the time of swim-up and alevins may become trapped in the gravel and perish. This aspect is the main concern of the present report. Experiments were conducted to examine the effects upon fry emergence of a sand layer deposited on the gravel surface. The study concludes that fry of brown trout and Atlantic salmon emerged through layers of sand up to 8 cm thick but the percentage emergence, even from the controls with no sand, was relatively low (5 - 68%). There was no firm evidence that the experimental treatments influenced percentage emergence, timing of emergence or weight of fry at the time of emergence.
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
Little is known about the seasonality and distribution of grouper larvae (Serranidae: Epinephelini) in the Gulf of Mexico and Atlantic Ocean off the coast of the southeast United States. Grouper larvae were collected from a transect across the Straits of Florida in 2003 and 2004 and during the Southeast Area Monitoring and Assessment Program spring and fall surveys from 1982 through 2005. Analysis of these larval data provided information on location and timing of spawning, larval distribution patterns, and interannual occurrence for a group of species not easily studied as adults. Our analyses indicated that shelf-edge habitat is important for spawning of many species of grouper—some species for which data were not previously available. Spawning for some species may occur year-round, but two peak seasons are evident: late winter and late summer through early fall. Interannual variability in the use of three important subregions by species or groups of species was partially explained by environmental factors (surface temperature, surface salinity, and water depth). A shift in species dominance over the last three decades from spring-spawned species (most of the commercial species) to fall-spawned species also was documented. The results of these analyses expand our understanding of the basic distribution and spawning patterns of northwest Atlantic grouper species and indicate a need for further examination of the changing population structure of individual species and species dominance in the region.
Resumo:
Summer flounder (Paralichthys dentatus) is one of the most economically and ecologically important estuarine-dependent species in the northeastern United States. The status of the population is currently a topic of controversy. Our goal was to assess the potential of using larval abundance at ingress as another fishery independent measure of spawning stock biomass or recruitment. Weekly long-term ichthyoplankton time series were analyzed from Little Egg Inlet, New Jersey (1989–2006) and Beaufort Inlet, North Carolina (1986–2004). Mean size-at-ingress and stage were similar between sites, whereas timing of ingress and abundance at ingress were not similar. Ingress primarily occurred during the fall at Little Egg Inlet and the winter at Beaufort Inlet. These findings agree with those from earlier studies in which at least two stocks (one north and one south of Cape Hatteras) were identified with different spawning periods. Larval abundance at Little Egg Inlet has increased since the late 1990s and most individuals now enter the estuary earlier during the season of ingress. Abundance at Little Egg Inlet was correlated with an increase in spawning stock biomass, presumably because spawning by larger, more abundant fish during the late 1990s and early 2000s provided increased larval supply, at least in some years. Larval abundance at ingress at Beaufort Inlet was not correlated with spawning stock biomass or with larval abundance at ingress at Little Egg Inlet, further supporting the hypothesis of at least two stocks. Larval abundance at Little Egg Inlet could be used as a fishery-independent index of spawning stock size north of Cape Hatteras in future stock assessments. Larval occurrence at Beaufort Inlet may provide information on the abundance of the stock south of Cape Hatteras, but additional stock assessment work is required.