3 resultados para Tidal canals

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was done for identifying and survey on distribution and diversity of true crabs in inter tidal and sub tidal zones of the Gulf of Oman (Sistan and Baluchistan province) during two year from 2009 to 2010. Specimens of inter tidal zones were carried out at 10 stations and 8 stations from sub tidal. The specimens were collected by hand and dip-net from inter tidal and by trawl net from sub tidal regions, preserved in 70% alcohol and carried to the laboratory. A total of 37 species belonged to 17 families from inter tidal and 23 species belonged to 9 families from sub tidal were identified. Of which 54 species were identified up to species level. 2 species from Matutidae, 1 species from Eriphiidae, Menippidae, Pseudoziidae, Plagusidae, Varunidae, Camptandriidae, Dromiidae and Dorippidae, 2 species from Oziidae, 3 species from Epialtidae, 2 species from Majidae, 4 species from Pilumnidae, 12 species from Portunidae, 6 species from Xanthidae, 2 species from Grapsidae, 3 species from Dotillidae, 3 species from Macrophthalmidae, 3 species from Ocypodidae, 3 species from Calappidae, 2 species from Parthenopidae and 1 species from Galenidae were identified. All specimens are deposited in the Zoological Museum, University of Tehran (ZUTC). The results of the present study revealed that family Portunidae with 6 species from inter tidal and 9 species from sub tidal regions have the highest species richness among the 22 families. Maximum similarity (Sorenson's Index) was obtained among the stations Breis, Lipar, Pozm and Gordim, and minimum was obtained among the stations Chazire-Kharchang with Pasabandar, Beris, Lipar, Daria-Bozorg, Pozm and Gordim in intertidal regions. In sub tidal regions maximum similarity (Sorenson's Index) was obtained among the stations Pasa bandar with Berisand minimum was obtained among the stations Govatr with Ramin and Gordim, Ramin with Pozm. Also maximum species richness was observed at Tiss in inter tidal and Chabahar in sub tidal stations, whereas minimum was obtained at Beris, Pozm, Gordim and Lipar in inter tidal and Govatr and Pozm in sub tidal stations. Family Ocypodidae in inter tidal and Portunidae in sub tidal regions have the highest distribution. In all of the species length and Breadth of carapace showed significant relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research is to study sedimentation mechanism by mathematical modeling in access channels which are affected by tidal currents. The most important factor for recognizing sedimentation process in every water environment is the flow pattern of that environment. It is noteworthy that the flow pattern is affected by the geometry and the shape of the environment as well as the type of existing affects in area. The area under the study in this thesis is located in Bushehr Gulf and the access channels (inner and outer). The study utilizes the hydrodynamic modeling with unstructured triangular and non-overlapping grids, using the finite volume, From method analysis in two scale sizes: large scale (200 m to 7.5km) and small scale (50m to 7.5km) in two different time durations of 15 days and 3.5 days to obtain the flow patterns. The 2D governing equations used in the model are the Depth-Averaged Shallow Water Equations. Turbulence Modeling is required to calculate the Eddy Viscosity Coefficient using the Smagorinsky Model with coefficient of 0.3. In addition to the flow modeling in two different scales and the use of the data of 3.5 day tidal current modeling have been considered to study the effects of the sediments equilibrium in the area and the channels. This model is capable of covering the area which is being settled and eroded and to identify the effects of tidal current of these processes. The required data of the above mentioned models such as current and sediments data have been obtained by the measurements in Bushehr Gulf and the access channels which was one of the PSO's (Port and Shipping Organization) project-titled, "The Sedimentation Modeling in Bushehr Port" in 1379. Hydrographic data have been obtained from Admiralty maps (2003) and Cartography Organization (1378, 1379). The results of the modeling includes: cross shore currents in northern and north western coasts of Bushehr Gulf during the neap tide and also the same current in northern and north eastern coasts of the Gulf during the spring tide. These currents wash and carry fine particles (silt, clay, and mud) from the coastal bed of which are generally made of mud and clay with some silts. In this regard, the role of sediments in the islands of this area and the islands made of depot of dredged sediments should not be ignored. The result of using 3.5 day modeling is that the cross channels currents leads to settlement places in inner and outer channels in tidal period. In neap tide the current enters the channel from upside bend of the two channels and outer channel. Then it crosses the channel oblique in some places of the outer channel. Also the oblique currents or even almost perpendicular current from up slope of inner channel between No. 15 and No. 18 buoys interact between the parallel currents in the channel and made secondary oblique currents which exit as a down-slope current in the channel and causes deposit of sediments as well as settling the suspended sediments carried by these currents. In addition in outer channel the speed of parallel currents in the bend of the channel which is naturally deeper increases. Therefore, it leads to erosion and suspension of sediments in this area. The speed of suspended sediments carried by this current which is parallel to the channel axis decreases when they pass through the shallower part of the channel where it is in the buoys No.7 and 8 to 5 and 6 are located. Therefore, the suspended sediment settles and because of this process these places will be even shallower. Furthermore, the passing of oblique upstream leads to settlement of the sediments in the up-slope and has an additional effect on the process of decreasing the depth of these locations. On the contrary, in the down-slope channel, as the results of sediments and current modeling indicates the speed of current increases and the currents make the particles of down-slope channel suspended and be carried away. Thus, in a vast area of downstream of both channels, the sediments have settled. At the end of the neap tide, the process along with circulations in this area produces eddies which causes sedimentation in the area. During spring some parts of this active location for sedimentation will enter both channels in a reverse process. The above mentioned processes and the places of sedimentation and erosion in inner and outer channels are validated by the sediments equilibrium modeling. This model will be able to estimate the suspended, bed load and the boundary layer thickness in each point of both channels and in the modeled area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, producing ability of electricity by horizontal tidal current turbines and installing possibility of these turbines on bridge's piers in the marine environments has been studied to reduce primary implementation costs and make the plan, economical. To do this and to study its feasibility, the exerted forces from installing horizontal tidal current turbines were compared with the forces applied to the bridge structure during designing process (given in the Standards). Then, the allowable ranges of the overloading which is tolerable by the piers of the bridge were obtained. Accordingly, it is resulted that for installing these turbines, the piers of the existing bridges are required to be strengthened. Because of increasing usage of renewable powers and as a suggestion, the exerted forces from installing turbine for loading coefficients of different Standards are given. Finally as an example, preliminary designing of a horizontal tidal current turbine was carried out for Gesham Channel and the forces exerted from turbine to the bridge's pier were calculated for the future usage in order to create a test site of real dimensions.