9 resultados para Three-dimensional model of onboarding
em Aquatic Commons
Resumo:
Observations of Caspian Sea during August - September 1995 are used to develop a three dimensional numerical for calculating temperature and current. This period was chosen because of extensive set of observational data including surface temperature observations. Data from the meteorological buoy network on Caspian Sea are combined with routine observation at first order synoptic station around the lake to obtain hourly values of wind stress and pressure fields. Initial temperature distribution as a function of depth and horizontal coordinates are derived from ship cruises. The model has variable grid resolution and horizontal smoothing which filters out small scale vertical motion. The hydrodynamic model of Caspian Sea has 6 vertical levels and a uniform horizontal grid size of 50 km The model is driven with surface fluxes of heat and momentum derived from observed meteorological. The model was able to reproduce all of the basic feature of the thermal structure in Caspian sea and: larger scale circulation patterns tend to be cyclone, with cyclone circulation with each sub basin. Result has agreement with observations.
Resumo:
The hydro dynamical actions in big Lakes directly influence dynamic, physical and chemical affairs. The circulation's models and temperature have something to do with the movements of fluids, and analysis for circulation in Caspian sea is because of the lack of observation through which the circulations and out comings are determined. Through the studies, three dimensional simulations (Large- Scale) are planned and performed, according to Smolakiewicz and Margolin works. This is a non- hydrostatic and Boussinesq approximation is used in its formulation is used in its formulation on the basis of Lipps (1990) theorem and curve lines, the fluid is constant adiabatic and stratified, and the wind power is considered zero. The profile of speed according to previous depth and before ridge can be drawn on the basis of density available between northern and southern ridges. The circulation field is drawn from 3 cm/s to 13 cm/s on the plate z= 5 cm , the vertical changes of speed on the plate is 0.02 m/s. Vertical profile , horizontal speed in previous on, and after the ridges on are drawn on different spaces. It changes from 0.5 cm/s to 1 cm/s before ridges.
Resumo:
Nowadays, Caspian Sea is in focus of more attentions than past because of its individualistic as the biggest lake in the world and the existing of very large oil and gas resources within it. Very large scale of oil pollution caused by development of oil exploration and excavation activities not only make problem for coastal facilities but also make severe damage on environment. In the first stage of this research, the location and quality of oil resources in offshore and onshore have been determined and then affected depletion factors on oil spill such as evaporation, emulsification, dissolution, sedimentation and so on have been studied. In second stage, sea hydrodynamics model is offered and tested by determination of governing hydrodynamic equations on sea currents and on pollution transportation in sea surface and by finding out main parameters in these equations such as Coriolis, bottom friction, wind and etc. this model has been calculated by using cell vertex finite volume method in an unstructured mesh domain. According to checked model; sea currents of Caspian Sea in different seasons of the year have been determined and in final stage different scenarios of oil spill movement in Caspian sea on various conditions have been investigated by modeling of three dimensional oil spill movement on surface (affected by sea currents) and on depth (affected by buoyancy, drag and gravity forces) by applying main above mentioned depletion factors.
Resumo:
Persian Gulf region is globally of great importance due to its economical and political reasons. The importance lies in oil sources and sea exports. Geophysical phenomena dominated in the water circulation affected this region is called Monsoon it stretches from African coasts to the half way of Red Seal affected all coasts of Persian Gulf and goes toward east to the Indian ocean. Other essential factors in the water circulation in this region are net evaporation (several meters in per year), high density and high salinity. In this article the effects of wind stress and evaporation in the water circulation in the region will be considered and model equations for wind forces, density, pressure, gradient, and bottom friction for Persian Gulf will be discussed.
Resumo:
This research is based on a numerical model for forecasting the three-dimensional behavior of (sea) water motion due to the effect of a variable wind velocity. The results obtained are then analyzed and compared with observation. This model is based on the equations that overcome the current and distribution of temperature by applying the method of finite difference with assuming Δx, Δy as constant and Δz, variable. The model is based on the momentum equation, continuity equation and thermodynamic energy equation and tension at the surface and middle layers and bottom stress. The horizontal and vertical eddy viscosity and thermal diffusivity coefficients we used in accordance with that of the Bennet on Outario Lake (1977). Considering the Caspian Sea dimension in numerical model the Coriolis parameter used with β effects and the approximation Boussines have been used. For the program controlling some simple experiment with boundary condition similar to that of the Caspian Sea have been done. For modeling the Caspian Sea the grid of the field was done as follows: At horizontal surface grid size is 10×10km extension and at vertical in 10 layers with varying thickness from surface to bed respectively as: 5, 10, 20, 3, 50, 100, 150, 200, 25, 500 and higher. The data of wind as velocity، direction and temperature of water related to 15th September 1995 at 6،12 and 18 o’clock were obtained from synoptic station at the Caspian Sea shore and the research marine of Haji Alief. The information concerning shore wind was measured and by the method of SPM (shore protection manual) was transferred to far shore winds through interpolation and by use of inverse square distance of position distribution of the wind velocity at the Caspian surface field was obtained. The model has been evaluated according to the reports and observations. Through studying the position of the current in different layers، the velocity in the cross section in the northern، southern and the middle layers، will be discussed. The results reveal the presence of the circulation cells in the three above mentioned areas. The circulation with depth is reduced too. The results obtained through the numerical solution of the temperature equation have been compared with the observation. The temperature change in different layers in cross section illustrates the relative accordance of the model mentioned.
Resumo:
The study was conducted in collaboration with the ECFC project of the FAO (BGD/97/017) in Cox's Bazar to develop a low cost solar tunnel dryer for the production of high quality marine dried fish. The study areas were Kutubdiapara, Maheshkhali and Shahparirdip under Cox's Bazar district. Three different models of low cost solar dryer were constructed with locally available materials such as bamboo, wood, bamboo mat, hemp, canvas, wire, nails, rope, tin, polythene and net. Size of the dryers were: 20x4x3 ft ; 30x3x3 ft and 65x3x3 ft with the costs of Tk. 3060, 3530, 9600 for dryer 1, 2 and 3, respectively having different models. The drying capacities were 50, 150, 500 kg for dryer 1, 2 and 3 respectively. The average temperature range inside the dryers were 29-43°C, 34-51°C and 37-57°C for dryer 1, 2 and 3 respectively as recorded at 8:30h to 16:30h. The relative humidity were in the ranges of 22-42%, 27-39% and 24-41 % in dryer 1, 2 and 3 respectively. The fish samples used were Bombay duck, Silver Jew fish and Ribbon fish. The total drying time was in the range of 30-42, 28-38 and 24-34 hours to reach the moisture content of 12.3-14.5, 11.8-14.3, and 11.6-14.1% in dryer 1, 2 and 3 respectively. Among these three fish samples the drying was faster in Silver Jew fish followed by Bombay duck and Ribbon fish in all the three dryer.
Resumo:
There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations.
Resumo:
Observational data and a three dimensional numerical model (POM) are used to investigate the Persian Gulf outflow structure and its spreading pathway into the Oman Sea. The model is based on orthogonal curvilinear coordinate system in horizontal and train following coordinate (sigma coordinate) system in vertical. In the simulation, the horizontal diffusivity coefficients are calculated form Smogorinsky diffusivity formula and the eddy vertical diffusivities are obtained from a second turbulence closure model (namely Mellor-Yamada level 2.5 model of turbulence). The modeling area includes the east of the Persian Gulf, the Oman Sea and a part of the north-east of the Indian Ocean. In the model, the horizontal grid spacing was assumed to be about 3.5 km and the number of vertical levels was set to 32. The simulations show that the mean salinity of the PG outflow does not change substantially during the year and is about 39 psu, while its temperature exhibits seasonal variations. These lead to variations in outflow density in a way that is has its maximum density in late winter (March) and its minimum in mid-summer (August). At the entrance to the Oman Sea, the PG outflow turns to the right due to Coriolis Effect and falls down on the continental slope until it gains its equilibrium depth. The highest density of the outflow during March causes it to sink more into the deeper depths in contrast to that of August which the density is the lowest one. Hence, the neutral buoyancy depths of the outflow are about 500 m and 250 m for March and August respectively. Then, the outflow spreads in its equilibrium depths in the Oman Sea in vicinity of western and southern boundaries until it approach the Ras al Hamra Cape where the water depth suddenly begins to increase. Therefore, during March, the outflow that is deeper and wider relative to August, is more affected by the steep slope topography and as a result of vortex stretching mechanism and conservation of potential vorticity it separates from the lateral boundaries and finally forms an anti-cyclonic eddy in the Oman Sea. But during August the outflow moves as before in vicinity of lateral boundaries. In addition, the interaction of the PG outflow with tide in the Strait of Hormuz leads to intermittency in outflow movement into the Oman Sea and it could be the major reason for generations of Peddy (Peddies) in the Oman Sea.