6 resultados para Three body model
em Aquatic Commons
Resumo:
The study was conducted in collaboration with the ECFC project of the FAO (BGD/97/017) in Cox's Bazar to develop a low cost solar tunnel dryer for the production of high quality marine dried fish. The study areas were Kutubdiapara, Maheshkhali and Shahparirdip under Cox's Bazar district. Three different models of low cost solar dryer were constructed with locally available materials such as bamboo, wood, bamboo mat, hemp, canvas, wire, nails, rope, tin, polythene and net. Size of the dryers were: 20x4x3 ft ; 30x3x3 ft and 65x3x3 ft with the costs of Tk. 3060, 3530, 9600 for dryer 1, 2 and 3, respectively having different models. The drying capacities were 50, 150, 500 kg for dryer 1, 2 and 3 respectively. The average temperature range inside the dryers were 29-43°C, 34-51°C and 37-57°C for dryer 1, 2 and 3 respectively as recorded at 8:30h to 16:30h. The relative humidity were in the ranges of 22-42%, 27-39% and 24-41 % in dryer 1, 2 and 3 respectively. The fish samples used were Bombay duck, Silver Jew fish and Ribbon fish. The total drying time was in the range of 30-42, 28-38 and 24-34 hours to reach the moisture content of 12.3-14.5, 11.8-14.3, and 11.6-14.1% in dryer 1, 2 and 3 respectively. Among these three fish samples the drying was faster in Silver Jew fish followed by Bombay duck and Ribbon fish in all the three dryer.
Resumo:
Observations of Caspian Sea during August - September 1995 are used to develop a three dimensional numerical for calculating temperature and current. This period was chosen because of extensive set of observational data including surface temperature observations. Data from the meteorological buoy network on Caspian Sea are combined with routine observation at first order synoptic station around the lake to obtain hourly values of wind stress and pressure fields. Initial temperature distribution as a function of depth and horizontal coordinates are derived from ship cruises. The model has variable grid resolution and horizontal smoothing which filters out small scale vertical motion. The hydrodynamic model of Caspian Sea has 6 vertical levels and a uniform horizontal grid size of 50 km The model is driven with surface fluxes of heat and momentum derived from observed meteorological. The model was able to reproduce all of the basic feature of the thermal structure in Caspian sea and: larger scale circulation patterns tend to be cyclone, with cyclone circulation with each sub basin. Result has agreement with observations.
Resumo:
The hydro dynamical actions in big Lakes directly influence dynamic, physical and chemical affairs. The circulation's models and temperature have something to do with the movements of fluids, and analysis for circulation in Caspian sea is because of the lack of observation through which the circulations and out comings are determined. Through the studies, three dimensional simulations (Large- Scale) are planned and performed, according to Smolakiewicz and Margolin works. This is a non- hydrostatic and Boussinesq approximation is used in its formulation is used in its formulation on the basis of Lipps (1990) theorem and curve lines, the fluid is constant adiabatic and stratified, and the wind power is considered zero. The profile of speed according to previous depth and before ridge can be drawn on the basis of density available between northern and southern ridges. The circulation field is drawn from 3 cm/s to 13 cm/s on the plate z= 5 cm , the vertical changes of speed on the plate is 0.02 m/s. Vertical profile , horizontal speed in previous on, and after the ridges on are drawn on different spaces. It changes from 0.5 cm/s to 1 cm/s before ridges.
Resumo:
The last decade has seen the development and application of a spectrum of physical and numerical hydrographic models of the Chesapeake Bay and its tributaries. The success of the James River Hydraulic Model has initiated the construction of an estuarine hydraulic model of the entire Chesapeake System. Numerical analogues for hydrographic behavior and contaminant dispersion in one-, two-, and three dimensional model estuaries exist for various regions of the Bay. From an engineering viewpoint, one dimensional models are sufficiently advanced to be routinely employed in aiding management decisions. Bay investigators are playing leading roles in the development of two- and three-dimensional models of estuarine flows.
Resumo:
A developmental series of larval and pelagic juvenile pygmy rockfish (Sebastes wilsoni) from central California is illustrated and described. Sebastes wilsoni is a non- commercially, but ecologically, important rockfish, and the ability to differentiate its young stages will aid researchers in population abundance studies. Pigment patterns, meristic characters, morphometric measurements, and head spination were recorded from specimens that ranged from 8.1 to 34.4 mm in standard length. Larvae were identified initially by meristic characters and the absence of ventral and lateral midline pigment. Pelagic juveniles developed a prominent pigment pattern of three body bars that did not extend to the ventral surface. Species identification was confirmed subsequently by using mitochondrial sequence data of four representative specimens of various sizes. As determined from the examination of otoliths, the growth rate of larval and pelagic juvenile pygmy rockfish was 0.28 mm/day, which is relatively slow in comparison to the growth rate of other species of Sebastes. These data will aid researchers in determining species abundance.
Resumo:
In this study, numerical simulation of the Caspian Sea circulation was performed using COHERENS three-dimensional numerical model and field data. The COHERENS three-dimensional model and FVCOM were performed under the effect of the wind driven force, and then the simulation results obtained were compared. Simulation modeling was performed at the Caspian Sea. Its horizontal grid size is approximately equal to 5 Km and 30 sigma levels were considered. The numerical simulation results indicate that the winds' driven-forces and temperature gradient are the most important driving force factors of the Caspian circulation pattern. One of the effects of wind-driven currents was the upwelling phenomenon that was formed in the eastern shores of the Caspian Sea in the summer. The simulation results also indicate that this phenomenon occurred at a depth less than 40 meters, and the vertical velocity in July and August was 10 meters and 7 meters respectively. During the upwelling phenomenon period the temperatures on the east coast compared to the west coast were about 5°C lower. In autumn and winter, the warm waters moved from the south east coast to the north and the cold waters moved from the west coast of the central Caspian toward the south. In the subsurface and deep layers, these movements were much more structured and caused strengthening of the anti-clockwise circulation in the area, especially in the central area of Caspian. The obtained results of the two models COHERENS and FVCOM performed under wind driven-force show a high coordination of the two models, and so the wind current circulation pattern for both models is almost identical.