28 resultados para Terrestrial radiation
em Aquatic Commons
Resumo:
The efficiency of utilisation of the sun's radiation by natural communities has not been properly demonstrated with what so far has been obtained of reliable values, and it represents a great interest in many respects. A systematic study of the biotic balance of lakes was done in the course of a succession of summers starting in 1932, extensive material was obtained, which permitted to compute a value fear the utilisation of the sun's radiation by plankton in lakes, and to compare this with corresponding values for marine plankton and terrestrial vegetation.
Resumo:
This is the Impact Assessment of ionising Radiation on Wildlife document produced by the Environment Agency in 2001. This report describes the behaviour and transport of radionuclides in the environment, considers the impact of ionising radiation on wildlife, and makes recommendations on an approach for the Impact assessment of ionising radiation on wildlife for England and Wales. The assessment approach focuses on three ecosystems representative of those considered potentially most at risk from the impact of authorised radioactive discharges, namely a coastal grassland (terrestrial ecosystem); estuarine and freshwater ecosystems. The likely scale of the impact on wildlife is also assessed in light of a preliminary analysis based on this assessment approach. The report demonstrates the behaviour and transfer of radionuclides in a number of different ecosystem types. Particular emphasis is placed on exposure pathways in those ecosystems most likely to be impacted by the authorised discharges of radioactivity within England and Wales. The use of biomarker techniques is reviewed in the report, and their application to the study of exposure to multiple contaminants is discussed.
Resumo:
(PDF has 12 pages.)
Resumo:
Some relevant components of selection program theory and implementation are reviewed. This includes pedigree recording, genetic evaluation, balancing genetic gains and genetic diversity and tactical integration of key issues. Lessons learned are briefly described – illustrating how existing method and tools can be useful when launching a program in a novel species, and yet highlighting the importance of proper understanding and custom application according to the biology and environments of that species.
Resumo:
These minutes report on colloquium on the methodology of radiation measurement under water. The meeting was held on 3-5 January 1957, at the Biological Station, Lunz, Austria. The participants of the colloquium discussed various methodologies of radiation measurements, basic methods such as Secchi Disc and underwater photometer as well as specialist equipment like the absolute radiation apparatus.
Resumo:
This paper presents an algorithm and software (available from ICLARM) for estimating the possible amount of sunlight that may fall on any location of the earth, any day of the year, as might be required for ecological modelling.
Resumo:
The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.
Resumo:
Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.
Resumo:
By how much does changing radiation from the Sun influence Earth's climate compared with other natural and anthropogenic processes? Answering this question is necessary for making policy regarding anthropogenic global change, which must be detected against natural climate variability. Current knowledge of the amplitudes and time scales of solar radiative output variability available from contemporary solar monitoring and historical reconstructions can help specify climate forcing by changing radiation over multiple time scales.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We argue that the most important climatically-driven terrestrial ecosystem changes are concentrated in annual- to decadal-scale episodic events. These rapid ecosystem responses to climate change are manifested as regionally synchronized disturbance events (eg, floods, fires, and insect outbreaks) and increased drought-caused plant mortality rates.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Western North America is particularly rich in natural records of climate that have potential to reveal features of interdecadal climate variability.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Large-scale changes in the growth and decay of land plants can be deduced from trends in the concentration of atmospherics [sic] carbon dioxide, after removing signals in the recorded data caused by oceanic and industrial disturbances to the concentration.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High alpine environments provide a variety of paleorecords based on physical (glaciers, glacio-lacustrine sedimentation) and biological systems (tree rings, tree-line fluctuations). These records have varying temporal resolution and contain different climate-related signals but, in concert, provide a more comprehensive reconstruction of past climates than is possible from any single archive.