3 resultados para Telecommunication cables
em Aquatic Commons
Resumo:
Otter trawls are very effective at capturing flatfish, but they can affect the seaf loor ecosystems where they are used. Alaska f latf ish trawlers have very long cables (called sweeps) between doors and net to herd fish into the path of the trawl. These sweeps, which ride on and can disturb the seaf loor, account for most of the area affected by these trawls and hence a large proportion of the potential for damage to seaf loor organisms. We examined modifications to otter trawls, such that disk clusters were installed at 9-m intervals to raise trawl sweeps small distances above the seafloor, greatly reducing the area of direct seafloor contact. A critical consideration was whether flatfish would still be herded effectively by these sweeps. We compared conventional and modified sweeps using a twin trawl system and analyzed the volume and composition of the resulting catches. We tested sweeps raised 5, 7.5, and 10 cm and observed no significant losses of flatfish catch until sweeps were raised 10 cm, and those losses were relatively small (5–10%). No size composition changes were detected in the flatfish catches. Alaska pollock (Theragra chalcogramma) were captured at higher rates with two versions of the modified sweeps. Sonar observations of the sweeps in operation and the seaf loor after passage confirmed that the area of direct seafloor contact was greatly reduced by the modified sweep
Resumo:
Three aspects of a survey bottom trawl performance—1) trawl geometry (i.e., net spread, door spread, and headrope height); 2) footrope distance off-bottom; and 3) bridle distance off-bottom—were compared among hauls by using either of two autotrawl systems (equal tension and net symmetry) and hauls conducted with towing cables of equal length and locked winches. The effects of environmental conditions, vessel heave, crabbing (i.e., the difference between vessel heading and actual vessel course over ground), and bottom current on trawl performance with three trawling modes were investigated. Means and standard deviations of trawl geometry measures were not significantly different between autotrawl and locked-winch systems. Bottom trawls performed better with either autotrawl system as compared to trawling with locked winches by reducing the variance and increasing the symmetry of the footrope contact with the bottom. The equal tension autotrawl system was most effective in counteracting effects of environmental conditions on footrope bottom contact. Footrope bottom contact was most inf luenced by environmental conditions during tows with locked winches. Both of the autotrawl systems also reduced the variance and increased the symmetry of bridle bottom contact. Autotrawl systems proved to be effective in decreasing the effects of environmental factors on some aspects of trawl performance and, as a result, have the potential to reduce among-haul variance in catchability of survey trawls. Therefore, by incorporating an autotrawl system into standard survey procedures, precision of survey estimates of relative abundance
Resumo:
Unobserved mortalities of nontarget species are among the most troubling and difficult issues associated with fishing, especially when those species are targeted by other fisheries. Of such concern are mortalities of crab species of the Bering Sea, which are exposed to bottom trawling from groundfish fisheries. Uncertainty in the management of these fisheries has been exacerbated by unknown mortality rates for crabs struck by trawls. In this study, the mortality rates for 3 species of commercially important crabs—red king crab, (Paralithodes camtschaticus), snow crab (Chionoecetes opilio) and southern Tanner crab (C. bairdi)—that encounter different components of bottom trawls were estimated through capture of crabs behind the bottom trawl and by evaluation of immediate and delayed mortalities. We used a reflex action mortality predictor to predict delayed mortalities. Estimated mortality rates varied by species and by the part of the trawl gear encountered. Red king crab were more vulnerable than snow or southern Tanner crabs. Crabs were more likely to die after encountering the footrope than the sweeps of the trawl, and higher death rates were noted for the side sections of the footrope than for the center footrope section. Mortality rates were ≤16%, except for red king crab that passed under the trawl wings (32%). Herding devices (sweeps) can expand greatly the area of seafloor from which flatfishes are captured, and they subject crabs in that additional area to lower (4–9%) mortality rates. Raising sweep cables off of the seafloor reduced red king crab mortality rates from 10% to 4%.