15 resultados para Technological physics
em Aquatic Commons
Resumo:
A study of fishing crafts was conducted in some coastal states of Nigeria to elucidate findings on the existing crafts as the baseline for further developments. Based on the technical designs, three types of fishing crafts were identified; planked, dug-out and half dug-out canoes. The planked canoes have the largest cubic number and dug-out canoes the least. At loadwater line, the ratio of freeboard to draft was 2 : 1 for planked canoes, indicating reserved buoyancy. Trim of planked canoe is by stern; the beam-length ratio for dug-out canoes showed high drag. Most of the sea-going canoes have U-shaped bottom hull profile capable of withstanding the rigours of surf landing and displayed good stability against longitudinal water wave. Gunwale and thwarts provided respectively the longitudinal and transverse strength of planked and half dug-out canoes. With its characteristics 'weight low down' construction, planked canoe represent the climax of small scale fishing crafts developments in Nigerian coastal waters. It's only draw back is durability. Further improvement in this canoe should be aimed at increasing the hull size and stiffness, water tightness of deck by coating, caulking, fastening, increasing level of motorization and installation of deck working equipments. Experimental design and use of fibre glass, aluminium and ferrocement hulls, together with improved planked canoe is highly advocated
Resumo:
The chemical and organoleptic properties of prawn held in ice for different days prior to cooking and the changes after freezing and subsequent storage were studied with three different species of prawn viz. Metapenaeus monoceros, Metapenaeus dobsoni and Parapeneopsis stylifera. The optimum period for which the prawn can be kept under ideal conditions of icing prior to cooking has been worked out.
Resumo:
The importance of sanitary practices in the processing of precooked frozen shrimps has been discussed. Several typical examples have been shown to point out the different sources of contamination of the product and the extent to which each of the factors by itself or in combination affect the bacterial quality of the final product. A scheme of processing has also been suggested for controlling the microbial quality.
Resumo:
Rate and pattern of spoilage of some of the economically important edible species of shell fishes Mytilus edulis (Mussel), Villorita cornucopia (Clam), Neptunus pelagicus (Crab) and Scylla serrata (Crab) have been discussed in this communication. Chemical indices used for objective evaluation of quality were water extractable nitrogen (WEN), non-protein nitrogen (NPN), free α-amino nitrogen (α - NH2 -N), glycogen, lactic acid and inorganic phosphorus in addition to the subjective tests. No significant difference in the spoilage pattern of the species during ice storage was observed and these species could be preserved in ice in organoleptic acceptable condition up to 8 days, 9 days, 8 days and 11 days respectively.
Resumo:
To design, develop and put into operation an equipment either to increase the productivity or to improve the existing technique to obtain a better quality of the product, the fishery engineer/scientist should have a comprehensive knowledge of fundamental principles involved in the process. Many a technique in fish processing technology, whether it applies to freezing, dehydration or canning, involves always a type of heat transfer, which is dependent to a certain extent on the external physical parameters like temperature. humidity, pressure, air flow etc. and also on the thermodynamic properties of fish muscle in the temperature ranges encountered. Similarly informations on other physical values like dielectric constant and dielectric loss in the design of quick trawlers and in quality assessment of frozen/iced fish, refractive index and viscosity in the measurement of the saturation and polymerisation of fish oils and shear strength in the judgement of textural qualities of cooked fish are also equally important.
Resumo:
The purpose of this communication is to bring out the influence of season on the chemical composition of crab, covering a period of 2 years. Changes in moisture, protein, water extractable nitrogen, non-protein nitrogen, glycogen, lactic acid, fat and free amino acid composition of crab meat have been reported on a monthly basis.
Resumo:
The possible factors leading to the loss of flavour and general quality of crab during freezing and frozen storage have been studied. The preprocess ice storage condition of the raw material was found to be one such important factor while the fresh frozen crab meat remained in good organoleptic condition for about 51 weeks at -23°C, the 7 days iced material held frozen was found to have a shelf life of about 21 weeks. The fall in myofibrillar protein noted during frozen storage together with the loss of myosin ATPase activity correlated well with the loss of organoleptic qualities.
Resumo:
The present work was undertaken to enlighten upon the comparative efficiency of different glazes in improving the quality of frozen crab meat (Scylla Serrata).
Resumo:
The changes in chemical, bacteriological and organoleptic qualities of mussels and clams during freezing and subsequent frozen storage have been studied in relation to the holding time in ice prior to freezing and the shelf-life of the product is determined.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).