54 resultados para Technical schools
em Aquatic Commons
Resumo:
(263 page document)
Resumo:
Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)
Resumo:
ENGLISH: Yellowfin tuna, Neothunnus macropterus, and skipjack tuna, Katsuwonus pelamis, are fished intensively off the west coast of the Americas in an area from about the California-Mexico border in the north to the Peru-Chile border in the south. The historical development of this fishery, and its expansion by the long-range California fleets of bait and purse-seine vessels, are well documented by Godsil (1938), Scofield (1951) and Shimada and Sehaefer (1956). The quarterly distribution of the tuna catches within this area has been reported for some recent years by Alverson (1959). SPANISH: Los atunes aleta amarilla, Neothunnus macropterus, y barrilete, Katsuwonus pelamis, son pescados con intensidad frente a la costa occidental del continente americano, en un área comprendida más o menos entre la frontera California-México en el norte y el límite Perú-Chile en el sur. El desarrollo histórico de esta pesquería y la expansión que le han dado las flotas californianas de largo radio de acción, formadas por los barcos de carnada y rederos, están bien documentados por Godsil (1938), Scofield (1951) y Shimada y Schaefer (1956). La distribución trimestral de las pescas de atún dentro de esta área ha sido tratada por Alverson (1959) con referencia a años recientes.
Resumo:
The STREAM Initiative set logframe indicators, at their Technical Advisory Committee meetings and this is a progress report based on given indicators. It further includes two articles: The Kandhkelgaon story: A bold bid by women in Kandhkelgaon Village, Saintala Block, Bolangir District, to break out of their poverty trap, by Graham Haylor, S.D. Tripathi, B.K. Satpathy and Dipti Behera. Networking for rural development: a closer look at the evolution of communications in the STREAM Initiative, by Graham Haylor, Kath Copley and William Savage. (PDF contains 27 Pages)
Resumo:
This report is a summary of the results of 883 purse seine sets made for juvenile salmonids during 15 cruises off the coasts of Oregon and Washington during the springs and summers of 1981-1985. Juvenile coho salmon (Oncorhynchus kisutch) occurred most frequently, followed by chinook salmon (0. tshawytscha). The juveniles of these two species co-occurred more frequently than expected. Juvenile chum, pink and sockeye salmon (0. keta, O. gorbuscha, and O. nerka), steelhead (0. mykiss) and cutthroat trout (0. clarki clarki) were caught much less frequently and in lower numbers than coho or chinook salmon. We found no evidence of large schools ofjuvenile salmonids. A northerly movement of juvenile coho salmon wa~ suggested by decreased catches off Oregon and increased catches off Washington between early and late summer. Highest catch per set of juvenile coho salmon was usually found inshore of 37.2 km. Juvenile chinook salmon were usually found within 27.9 km of the coast. Juvenile salmonids were found over a broad range of surface salinities and temperatures. High catches of juvenile coho salmon occurred in both the low salinity waters of the Columbia River plume and in adjacent higher salinity waters. Preferences for specific salinities or temperatures were not obvious for any species, although catch rates of juvenile coho salmon were highest in years when chlorophyll content was also high. Based on expansions of fish with coded wire tags, we estimated that hatchery coho salmon smolts comprised 74%, on average, of the juvenile coho salmon catches. The remaining 26% were presumably wild fish or hatchery fish released as fingerlings. Hatchery coho salmon were caught roughly in proportion to the numbers released. However, hatchery fish from the Columbia River and private coastal facilities were caught at slightly higher rates while those from coastal Washington and public coastal Oregon hatcheries were caught at slightly lower rates than expected from the numbers released. No juvenile coho salmon with coded wire tags were caught that had originated from either California or Puget Sound hatcheries. (PDF file contains 88 pages.)
Resumo:
The following series of fishery publications produced in calendar years 1980-85 by the Scientific Publications OffIce of the National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), are listed numerically and indexed by author and subject: Circular, Fishery BuUetin, Marine Fisheries Review, Special Scientific Report-Fisheries, and Technical Report NMFS. Also included is an alphanumeric listing of the NOAA Technical Memorandum NMFS series published in calendar years 1972-85 by NMFS regional offices and fisheries centers. Authors and subjects for the Memoradum series are indexed with the other publication series. (PDF file contains 156 pages.)
Resumo:
The trawl fishery for pelagic annorhead, Pseuaopentaceros wheeleri(fonnerly referred to as Pentaceros richardsoni), and alfonsin, Beryx splendens, over the central North Pacific seamounts has a relatively short history. Before 1967, fishery scientists were generally unaware of the resources on seamounts; however, the discovery of commercial concentrations of pelagic armorhead on seamounts in the southern Emperor Seamounts by a Russian commercial trawler in November 1967 led to almost immediate exploitation of the species by the Soviets. Unconfinned reports indicated that the schools of pelagic annorhead on the seamounts averaged 30 m thick and catches averaged from 3 to 50 metric tons on 10-20 min hauls (Sakiura 1972). Japanese trawlers entered the fishery in 1969. To assist in the development of this tishery, Japanese research vessels conducted extensive surveys in 1972 on the distribution and potential for development ofthe pelagic armorhead and alfonsin resources. The results of their surveys to the central North Pacific and mid-Pacific seamounts showed that many had summits that were too deep for trawling. Those found suitable were concentrated in the southern Emperor-northern Hawaiian Ridge. (PDF file contains 113 pages.)
Resumo:
This document is part of a series of 5 technical manuals produced by the Challenge Program Project CP34 “Improved fisheries productivity and management in tropical reservoirs”. Inland capture fisheries in India have declined in recent years, leaving thousands of fishers to sink deeper into poverty. Freshwater aquaculture in small water bodies like ponds now contributes 80% of the country¡¯s inland fish production. This manual outlines the use of small reservoir for freshwater aquacultureas a means of providing rural areas with food and livelihoods and protecting aquatic ecosystems, in particular by facilitating the conservation of indigenous fish species. (PDF contains 22 pages)
Resumo:
This document is part of a series of 5 technical manuals produced by the Challenge Program Project CP34 “Improved fisheries productivity and management in tropical reservoirs”. The objective of this technical manual is to relay the field experience of a group of scientists who have worked extensively in small fisheries in sub-Sahara Africa and Asia and lay out a series of simple and pragmatic pointers on how to establish and run initiatives for community catch assessment. The manual relies in particular on practical experience gained implementing Project 34 of the Challenge Programme on Water and Food: Improved Fisheries Productivity and Management in Tropical Reservoirs. (PDF contains 26 pages)
Resumo:
Mozambique tilapia (Oreochromis mossambicus) is an indigenous tilapia species in southern Africa, until now the majority of genetic research has been carried out on Asian species of tilapia but this project aims to look at this African species. Those most suited to further development in aquaculture in southern Africa have now been identified. The genetic characterisation of strains has been completed. This information has aided the choice of strains for use in small scale aquaculture and for genetically male tilapia (GMT) production. They will form the basis of future strategies for further genetic improvement, and management of genetic diversity of Mozambique tilapia. The information will also contribute towards responsible management and development of genetic resources, particularly with regard to indigenous species of tilapia. Good progress has been made with the adaptation and implementation of producing the supermale fish required to produce all male offspring, resulting in faster growing populations of tilapia. The presence of the project and its associated activity has been a catalyst for a surge in interest in tilapia culture throughout southern Africa. [PDF contains 183 pages]
Resumo:
The purpose of the project is to develop sustained small-scale cage fish culture in inland and coastal waters through improved understanding of the social, institutional and resource environment of resource poor groups. Two Asian countries, Bangladesh (inland systems) and Vietnam (marine), were studied with this workshop bringing together both sides of the project together with representatives of collaborative institutions, government departments and universities. Addressing the overall aim of producing guidelines for the planning and extension of cage aquaculture in Asia a combination of group work and plenary discussion was conducted producing the following outputs. 1) An assessment of cage aquaculture potential, 2) Development options for small-scale cage culture, 3) A review of tools and methodologies and 4) Policy initiatives for sustainable cage culture development. Key issues raised were the use of outputs as a guide to be adapted to regional circumstances to facilitate farmer and extension worker discussion and not as a rigid methodology. The degree of linkage between development, research and government institutions was also considered a crucial factor in benefiting the research and development of cage culture at the local, regional and national level and vital in affecting the future policies by both development and government institutions. [PDF contains 242 pages]
Resumo:
[PDF contains 83 pages]
Resumo:
Nigeria's three federal fisheries schools are administered by three autonomous research institutes located in Lagos, New Bussa, and Maiduguri. The schools were established at different periods to train the required manpower for Nigeria's fishing industry which has remained predominantly artisanal since its inception in 1942 as a Second World War exigency. Despite the establishment of the schools, the industry's manpower is still being dominated by non-nationals especially in the capture fisheries sub-sector. The common features of the schools include the apparent insensitivity of their programmes to the industry's dynamic manpower needs; the absence of coordination of their programmes by a national body which would have ensured that the schools are able to communicate with one another and are willing to act and share a purpose. The need and the methodology for a change of emphasis from the on-going training of extension agents and officers to that of fishing operatives and technicians to enable Nigeria effectively harness her local fish resources towards self-sufficiency is highlighted.
Resumo:
The Workshop on Climate Change and Salmon Production was held in Vancouver, Canada, 26-27 March 1998. The Workshop was organized and sponsored by the North Pacific Anadromous Fish Commission (NPAFC). Each Party to the Commission designated one scientist to the Workshop Steering Committee. Each member of the Steering Committee chaired one half-day session of the Workshop. All necessary arrangements were made by the NPAFC Secretariat in cooperation with the Steering Committee and the Canadian Party to the Commission. (PDF contains 60 pages) Over 70 scientists, industry representatives and fisheries officials attended the Workshop. There were 20 presentations of scientific papers followed by the discussion sessions. Extended abstracts are included in this Technical Report, which also contains opening address by the Chairman of the Steering Committee and short review of the Workshop by the Coordinator. The material presented in the Technical Report has not been peer reviewed and does not necessarily reflect the views of either the NPAFC or the Parties. The material has been edited by the technical editor for clarity and publication purposes only. Items in this Report should not be cited except as personal communication and with the author's permission.
Resumo:
Estimates of dolphin school sizes made by observers and crew members aboard tuna seiners or by observers on ship or aerial surveys are important components of population estimates of dolphins which are involved in the yellowfin tuna fishery in the eastern Pacific. Differences in past estimates made from tuna seiners and research ships and aircraft have been noted by Brazier (1978). To compare various methods of estimating dolphin school sizes a research cruise was undertaken with the following major objectives: 1) compare estimates made by observers aboard a tuna seiner and in the ship's helicopter, from aerial photographs, and from counts made at the backdown channel, 2) compare estimates of observers who are told the count of the school size after making their estimate to the observer who is not aware of the count to determine if observers can learn to estimate more accurately, and 3) obtain movie and still photographs of dolphin schools of known size at various stages of chase, capture and release to be used for observer training. The secondary objectives of the cruise were to: 1) obtain life history specimens and data from any dolphins that were killed incidental to purse seining. These specimens and data were to be analyzed by the U.S. National Marine Fisheries Service ( NMFS ) , 2) record evasion tactics of dolphin schools by observing them from the helicopter while the seiner approached the school, 3) examine alternative methods for estimating the distance and bearing of schools where they were first sighted, 4) collect the Commission's standard cetacean sighting, set log and daily activity data and expendable bathythermograph data. (PDF contains 31 pages.)