47 resultados para TRAP
em Aquatic Commons
Resumo:
Executive Summary: This study describes the socio-economic characteristics of the U.S. Caribbean trap fishery that encompasses the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. In-person interviews were administered to one hundred randomly selected trap fishermen, constituting nearly 25% of the estimated population. The sample was stratified by geographic area and trap tier. The number of traps owned or fished to qualify for a given tier varied by island. In Puerto Rico, tier I consisted of fishermen who had between 1-40 fish traps, tier II was made up of fishermen who possessed between 41 and 100 fish traps, and tier III consisted of fishermen who held in excess of 100 fish traps. In St. Thomas and St. John, tier I was composed of fishermen who held between 1 and 50 fish traps, tier II consisted of fishermen who had between 51-150 fish traps and tier III was made up of fishermen who had in excess of 150 fish traps. Lastly, in St. Croix, tier I was made up of fishermen who had less than 20 fish traps and tier II consisted of fishermen who had 20 or more fish traps. The survey elicited information on household demographics, annual catch and revenue, trap usage, capital investment on vessels and equipment, fixed and variable costs, behavioral response to a hypothetical trap reduction program and the spatial distribution of traps. The study found that 79% of the sampled population was 40 years or older. The typical Crucian trap fisherman was older than their Puerto Rican and St. Thomian and St. Johnian counterparts. Crucian fishermen’s average age was 57 years whereas Puerto Rican fishermen’s average age was 51 years, and St. Thomian and St. Johnian fishermen’s average age was 48 years. As a group, St. Thomian and St. Johnian fishermen had 25 years of fishing experience, and Puerto Rican and Crucian fishermen had 30, and 29 years, respectively. Overall, 90% of the households had at least one dependent. The average number of dependents across islands was even, ranging between 2.8 in the district of St. Thomas and St. John and 3.4 in the district of St. Croix. The percentage utilization of catch for personal or family use was relatively low. Regionally, percentage use of catch for personal or family uses ranged from 2.5% in St. Croix to 3.8% in the St. Thomas and St. John. About 47% of the respondents had a high school degree. The majority of the respondents were highly dependent on commercial fishing for their household income. In St. Croix, commercial fishing made up 83% of the fishermen’s total household income, whereas in St. Thomas and St. John and Puerto Rico it contributed 74% and 68%, respectively. The contribution of fish traps to commercial fishing income ranged from 51% in the lowest trap tier in St. Thomas and St. John to 99% in the highest trap tier in St. Croix. On an island basis, the contribution of fish traps to fishing income was 75% in St. Croix, 61% in St. Thomas and St. John, and 59% in Puerto Rico. The value of fully rigged vessels ranged from $400 to $250,000. Over half of the fleet was worth $10,000 or less. The St. Thomas and St. John fleet reported the highest mean value, averaging $58,518. The Crucian and Puerto Rican fleets were considerably less valuable, averaging $19,831 and $8,652, respectively. The length of the vessels ranged from 14 to 40 feet. Fifty-nine percent of the sampled vessels were at least 23 feet in length. The average length of the St. Thomas and St. John fleet was 28 feet, whereas the fleets based in St. Croix and Puerto Rico averaged 21 feet. The engine’s propulsion ranged from 8 to 400 horsepower (hp). The mean engine power was 208 hp in St. Thomas and St. John, 108 hp in St. Croix, and 77 hp in Puerto Rico. Mechanical trap haulers and depth recorders were the most commonly used on-board equipment. About 55% of the sampled population reported owning mechanical trap haulers. In St. Thomas and St. John, 100% of the respondents had trap haulers compared to 52% in Puerto Rico and 20% in St. Croix. Forty-seven percent of the fishermen surveyed stated having depth recorders. Depth recorders were most common in the St. Thomas and St. John fleet (80%) and least common in the Puerto Rican fleet (37%). The limited presence of emergency position indication radio beacons (EPIRBS) and radar was the norm among the fish trap fleet. Only 8% of the respondents had EPIRBS and only 1% had radar. Interviewees stated that they fished between 1 and 350 fish traps. Puerto Rican respondents fished on average 39 fish traps, in contrast to St. Thomian and St. Johnian and Crucian respondents, who fished 94 and 27 fish traps, respectively. On average, Puerto Rican respondents fished 11 lobster traps, and St. Thomian and St. Johnian respondents fished 46 lobster traps. None of the Crucian respondents fished lobster traps. The number of fish traps built or purchased ranged between 0 and 175, and the number of lobster traps built or bought ranged between 0 and 200. Puerto Rican fishermen on average built or purchased 30 fish traps and 14 lobster traps, and St. Thomian and St. Johnian fishermen built or bought 30 fish traps and 11 lobster traps. Crucian fishermen built or bought 25 fish traps and no lobster traps. As a group, fish trap average life ranged between 1.3 and 5 years, and lobster traps lasted slightly longer, between 1.5 and 6 years. The study found that the chevron or arrowhead style was the most common trap design. Puerto Rican fishermen owned an average of 20 arrowhead traps. St. Thomian and St. Johnian and Crucian fishermen owned an average of 44 and 15 arrowhead fish traps, respectively. The second most popular trap design was the square trap style. Puerto Rican fishermen had an average of 9 square traps, whereas St. Thomian and St. Johnian fishermen had 33 traps and Crucian fishermen had 2 traps. Antillean Z (or S) -traps, rectangular and star traps were also used. Although Z (or S) -traps are considered the most productive trap design, fishermen prefer the smaller-sized arrowhead and square traps because they are easier and less expensive to build, and larger numbers of them can be safely deployed. The cost of a fish trap, complete with rope and buoys, varied significantly due to the wide range of construction materials utilized. On average, arrowhead traps commanded $94 in Puerto Rico, $251 in St. Thomas and St. John, and $119 in St. Croix. The number of trips per week ranged between 1 and 6. However, 72% of the respondents mentioned that they took two trips per week. On average, Puerto Rican fishermen took 2.1 trips per week, St. Thomian and St. Johnian fishermen took 1.4 trips per week, and Crucian fishermen took 2.5 trips per week. Most fishing trips started at dawn and finished early in the afternoon. Over 82% of the trips lasted 8 hours or less. On average, Puerto Rican fishermen hauled 27 fish traps per trip whereas St. Thomian and St. Johnian fishermen and Crucian fishermen hauled 68 and 26 fish traps per trip, respectively. The number of traps per string and soak time varied considerably across islands. In St. Croix, 84% of the respondents had a single trap per line, whereas in St. Thomas and St. John only 10% of the respondents had a single trap per line. Approximately, 43% of Puerto Rican fishermen used a single trap line. St. Thomian and St. Johnian fishermen soaked their traps for 6.9 days while Puerto Rican and Crucian fishermen soaked their traps for 5.7 and 3.6 days, respectively. The heterogeneity of the industry was also evidenced by the various economic surpluses generated. The survey illustrated that higher gross revenues did not necessarily translate into higher net revenues. Our analysis also showed that, on average, vessels in the trap fishery were able to cover their cash outlays, resulting in positive vessel income (i.e., financial profits). In Puerto Rico, annual financial profits ranged from $4,760 in the lowest trap tier to $32,467 in the highest tier, whereas in St. Thomas and St. John annual financial profits ranged from $3,744 in the lowest tier to $13,652 in the highest tier. In St. Croix, annual financial profits ranged between $9,229 and $15,781. The survey also showed that economic profits varied significantly across tiers. Economic profits measure residual income after deducting the remuneration required to keep the various factors of production in their existing employment. In Puerto Rico, annual economic profits ranged from ($9,339) in the lowest trap tier to $ 8,711 in the highest trap tier. In St. Thomas and St. John, annual economic profits ranged from ($7,920) in the highest tier to ($18,486) in the second highest tier. In St. Croix, annual economic profits ranged between ($7,453) to $10,674. The presence of positive financial profits and negative economic profits suggests that higher economic returns could be earned from a societal perspective by redirecting some of these scarce capital and human resources elsewhere in the economy. Furthermore, the presence of negative economic earnings is evidence that the fishery is overcapitalized and that steps need to be taken to ensure the long-run economic viability of the industry. The presence of positive financial returns provides managers with a window of opportunity to adopt policies that will strengthen the biological and economic performance of the fishery while minimizing any adverse impacts on local fishing communities. Finally, the document concludes by detailing how the costs and earnings information could be used to develop economic models that evaluate management proposals. (PDF contains 147 pages)
Resumo:
One third of the people on earth who are described as living in absolute poverty are found today in India. “These people,” says Mr B K Satpathy, “are caught in a poverty trap’.” “Poverty trap?” we ask. “These are creative weavers; their cloth has a distinctive style, but those who supply their thread also take away and sell the cloth, paying just a small labor cost for each saree. If they are skilled and work hard this amounts to only 25-30 rupees (60-70 US cents) per day.” Under this arrangement, weaving does not provide enough to live on, and people are seeking ways to escape their entrapment in poverty. (Pdf contains 6 pages).
Resumo:
This report presents oceanographic data supporting the detailed chemical studies in the VERTEX Particle Interceptor Trap (PIT) experiment off the central California coast. Prior to the deployment of the PITs, an oceanographic survey of the intended study area was made on R/V CAYUSE from 17 to 21 August 1980. During this cruise, twenty CTD stations (Fig. 1) were occupied in a grid centered about the PIT site selected earlier based on archival oceanographic data. During the second leg of the VERTEX experiment from 25 August to 3 September, CTO profiles were taken as time permitted. In addition, a short survey near the PITs was made on 2 September. The intent of the pre-deployment cruise was to obtain data characterizing the vertical and horizontal variability of physical and chemical properties and to map the geostrophic flow field. Toward this end, vertical profiles of salinity, temperature and dissolved oxygen were made using a Plessey 9040 CTOa profiler. Considerable effort was expended to make vertical beam attenuation profiles to
Resumo:
In this report, we present oceanographic results from VERTEX 3 Particle Interceptor Trap (PIT) experiment conducted off the western-coast of Mexico during October to November 1982. The oceanographic data presented here were obtained during three cruise legs by Moss Landing Marine Laboratory scientists aboard R/V Cayuse while the detailed chemical studies were done by other scientists aboard R/V Wecoma. Only the oceanographic data will be presented in this report. (PDF contains 82 pages)
Resumo:
Based on the findings and diagnostic survey, a new fishing trap, christened Lege trap was designed and fabricated, and the performance evaluated. The 8-valve Lege trap was assessed concurrently with Malian and Ndurutu traps by the fishermen in the study area. The experiment was conducted in a randomized complete block design with one factor each replicated three times. Data collected on fish diversity number, biomass and size were subjected to descriptive statistics and analysis of variance. The results showed that 22 fish species belonging to thirteen families were caught. The prototype (Lege) trap recorded higher species diversity index (0.90) than the Malian (0.50) and Ndurutu (0.50) traps. The Lege trap also accounted for the largest number (55%) and biomass (63%) of fish caught which was significantly (P<0.05) higher than those of the Malian and Nduutu traps were. The mean length (15.03~c5.70cm), weight (60.43~c48.61g) and girth (4.77~c1.65cm) of fishes caught in the Lege trap were also significantly (P0.05) higher than those caught in the other two traps. These results demonstrated better performance of the new trap than the two conventional traps, even though the sizes of some of the fish species caught in all the traps were below those allowed by the Sokoto State Fisheries Edict where the study was conducted. Therefore, since it is desirable to develop conservation-oriented trap at a least cost, it is necessary to research further on the number of valves and mesh size of the new trap
Resumo:
Three types of prototype (Lege) traps with different numbers of entrance valves were evaluated in River Rima, north western Nigeria. The traps contained 4,6 and 8 valves, tagged 4-V, 6-V and 8-V respectively. The experiment was carried out in a randomized complete block design with one factor each replicated three times. Data collected on fish diversity, number biomass and sizes were subjected to descriptive statistics and analysis of variance. The results of the catch composition showed close diversity index of 0.86 for 6-V, 0.80 for 8-V and 0.60 for 4-V Lege traps. However, the number (41%) and biomass 48%) of fish caught in the 6-V Lege trap were significantly (P0.05) higher than those caught in the other traps. There was no definite trend in the sizes (length and girth) of fish caught in the traps. On the basis of species diversity, and the number and biomass of fish caught, the 6-V Lege showed preference for adoption than the other two traps. However, further studies are recommended on the appropriate mesh size net for the trap in line with the provisions of fisheries edicts
Resumo:
Three types of prototype (Lege) traps with different numbers of entrance valves were evaluated in River Rima, north western Nigeria. The traps contained 4,6 and 8 valves, tagged 4-V, 6-V and 8-V respectively. The experiment was carried out in a randomized complete block design with one factor each replicated three times. Data collected on fish diversity, number, biomass and sizes were subjected to descriptive statistics and analysis of variance. The results of the catch composition showed close diversity index of 0.86 for 6-V, 0.80 for 8-V and 0.60 for 4-V Lege traps. However, the number (41%) and biomass (48%) of fish caught in the 6-V Lege trap were significantly (P<0.05) higher than those caught in the other traps. There was no definite trend in the sizes (length and girth) of fish caught in the traps. On the basis of species diversity, and the number and biomass of fish caught, the 6-V Lege showed preference for adoption than the other two traps. However, further studies are recommended on the appropriate mesh size net for the trap in line with the provisions of fisheries edicts
Resumo:
The spiny lobster (Panulirus argus) fishery in Florida was operationally inefficient and overcapitalized throughout the 1980s. The Trap Certificate Program initiated during the 1992–93 season was intended to increase gear efficiency by reducing the number of traps being used while maintaining the same catch level in the fishery. A depletion model was used to estimate trap fishing efficiency. The costs of fishing operations and the value of the catch were used to determine the revenues generated by the fishery under different trap levels. A negative functional relationship was found between the catchability coefficient and the number of traps, which indicated that the fewer traps operating under the trap reduction scheme were more efficient. Also, the financial analyses indicated that the higher catch efficiency resulting from fewer traps generated significantly higher revenues, despite lower stock abundances. This study indicates that the trap reduction program had improved a situation that would have been much worse.
Resumo:
Light traps are one of a number of different gears used to sample pelagic larval and juvenile fishes. In contrast to conventional towed nets, light traps primarily collect larger size classes, including settlement-size larvae (Choat et al., 1993; Hickford and Schiel, 1999 ; Hernandez and Shaw, 2003), and, therefore, have become important tools for discerning recruitment dynamics (Sponaugle and Cowen, 1996; Wilson, 2001). The relative ease with which multiple synoptic light trap samples can be taken means that larval distribution patterns can be mapped with greater spatial resolution (Doherty, 1987). Light traps are also useful for sampling shallow or structurally complex habitats where towed nets are ineffective or prohibited (Gregory and Powles, 1985; Brogan, 1994; Hernandez and Shaw, 2003).
Resumo:
Mortality of diamondback terrapins, Malaclemys terrapin, in blue crab, Callinectes sapidus, traps has become a controversial bycatch issue in some areas. Traps with turtle excluder devices (TED’s) had increased sublegal (14.5%), legal (32.9%), and total (25.7%) blue crab catch per trap day (CPUE). There were statistically significant differences between total (P=0.0202) and legal (0.0174) CPUE for standard traps and traps with TED’s. The increased catch rates of blue crabs in traps with TED’s may be due to decreased escapement through the entrance f
Resumo:
Percent escapements of blue crabs, Callinectes sapidus, by size and sex were determined for commercially available 38.1 mm square and hexagonal meshes and for five experimental squares. Commercial trap mesh sizes retained excessive numbers of sublegal blue crabs. Based on the criteria of maximizing sublegal crab escapement without an unacceptable loss of legal blue crabs, the 44.4 mm square (as measured from the inside of adjacent corners) was optimum and superior to either trap mesh used by fishermen.
Resumo:
Catch rates and sizes of blue crabs, Callinectes sapidus, were compared in traps with 2.54 cm (1.0 inch), 3.81 cm (1.5 inches), and 5.08 cm (2.0 inches) square mesh, 2.54 by 5.08 cm rectangular mesh, and 3.81 cm hexagonal mesh. Catch of legal blue crabs by number was significantly greater in the traditional hexagonal mesh trap than in all other trap types. Sublegal catch by number was highest (34.1-63.3% of total) in the 2.54 cm and 3.81 cm square mesh and rectangular mesh traps and lowest in the 5.08 cm square mesh trap. The hexagonal mesh trap had significantly lower catch rates of sublegal blue crabs than all other trap types except the 5.08 cm square mesh. Mean size of blue crabs by trap type exhibited an inverse pattern to that shown by catch of sublegal crabs. The most effective trap to maximize legal catch and minimize sublegal catch was the 3.81 cm hexagonal mesh trap followed by the 5.08 cm square mesh trap.
Resumo:
Catch and mesh selectivity of wire-meshed fish traps were tested for eleven different mesh sizes ranging from 13 X 13 mm (0.5 x 0.5") to 76 x 152 mm (3 X 6"). A total of 1,810 fish (757 kg) representing 85 species and 28 families were captured during 330 trap hauls off southeastern Florida from December 1986 to July 1988. Mesh size significantly affected catches. The 1.5" hexagonal mesh caught the most fish by number, weight, and value. Catches tended to decline as meshes got smaller or larger. Individual fish size increased with larger meshes. Laboratory mesh retention experiments showed relationships between mesh shape and size and individual retention for snapper (Lutjanidae), grouper (Serranidae), jack (Carangidae), porgy (Sparidae), and surgeonfish (Acanthuridae). These relationships may be used to predict the effect of mesh sizes on catch rates. Because mesh size and shape greatly influenced catchability, regulating mesh size may provide a useful basis for managing the commercial trap fishery.