4 resultados para TONGUE FLICK

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometric mean regression equation for the weight; length relationship of Cynoglossus canariensis was W = 0.0025 L super(3.1770). The Von Bertalanffy constants Woo, Loo, K, and to were 507.5852 g, 47.3683 cm, 0.3333 and 0.1397 for males and 839.0753 g, 54.4720 cm, 0.3062 and 0.1737 for females. Total mortality coefficient Z ranged from 0.6482 and 0.8021

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Common shrimp trawl designs employed in the southeastern United States shrimp fishery are the flat, balloon, semiballoon, jib, and super X-3. Recent innovations in trawl design and rigging, including the twin trawl rigging and tongue trawl design, have improved the efficiency of shrimp trawling gear. A description of the construction techniques for the different designs indicate differences which affect gear performance. Measurements of horizontal spread and vertical opening for 76 trawl configurations indicate the relative efficiencies of the different designs. Maximum horizontal spreading efficiency was achieved by the "twin" and "tongue" trawl designs followed by the super X-3, jib, balloon, and semiballoon designs. Designs having the greatest vertical openings were the tongue and flat trawl designs followed by the semiballoon. Maximum total gape dimension was demonstrated by the "Mongoose" tongue trawl. Comparison of trawl spreading efficiency and door area to headrope length ratio indicates that a range of 70-80 in square (per door) of door area is required for each foot of trawl headrope length for maximum efficiency with conventional trawl designs and 66-75 in square per foot of headrope for tongue trawl designs. (PDF file contains 18 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cruise of the R. V. Capricorne in May 1973, in inner part of the gulf of Guinea, allowed the authors to identify the main part of the Atlantic circulation at the longitude of 5 degrees E, between 4 degrees N and 4 degrees S. It gave new data on the termination of the equatorial undercurrent. At the equator, under the westward south equatorial current flows the Atlantic equatorial undercurrent with a maximum eastward velocity of 90 cm/sec at 30 m depth linked to a salinity maximum higher than 36.20 ppt. Below the equatorial undercurrent, about 80-100 m depth, flows a westward current with a velocity as high as 30 cm/sec. At 4 degrees S, the south equatorial countercurrent is well delineated by a high salinity core (more than 36.10 ppt) at 30 m depth with an eastward velocity core of 40 cm/sec. On the contrary, near 3 degrees 30N, a high salinity core (36.10 ppt) flows westwards with a speed of 40 cm/sec at 40 m depth: it is the "return flow" of the undercurrent (Hisard and Moliere 1974). At 4 degrees N the Guinea current carries eastwards surface salinities of 34.50 ppt at 40 cm/sec. Off Cape Lopez (0 degrees 35'S-8 degrees 42'E) the high salinity core of the undercurrent becomes wider near the shore. It is 25m wide offshore, and 70 m wide near the cape. A part of undercurrent water extends northwards, then flows westwards with the subsurface westward circulation in the inner part of the Gulf of Guinea. Another part flows south-southwestwards in a high salinity tongue along the African coast to 4 degrees S. South-west of Cape Lopez, the trades divergence contributes to an upwelling of cold and high salinity water; this water increases at the Cape Lopez front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the winter of 1982-1983, a combination of high tides, higher than normal sea level and storm-induced waves were devastating to the coast of California. Damage estimates for public and private property destruction in the coastal counties of California totaled over $100,000,000. Much higher than average sea levels played a very important contributory role in the flooding damage. These unusually high sea levels were due to a combination of higher than normal mixed layer temperature associated with a strong, 2-year El Nino, storm surge due to low atmospheric pressure and persistent winds, and the cumulative effect of steady, "global" rise in relative sea level. Higher than average high tides coincided to an unusual extent with the peak sea levels reached during the numerous storms between November 1982 and March 1983. Important cyclical variations occur in California's mixed tide regime and the consequences of these on extreme tides have not been properly considered previously. In fact, erroneous "predictions" of much higher tides in the 1990's appearing in the popular press during the 1982-83 flooding, caused much public apprehension.