14 resultados para Sustainability Assessment Framework
em Aquatic Commons
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.
Resumo:
A two day workshop was convened on February 2-3, 1998 in Charleston, SC with 20 invited experts in various areas of sea turtle research. The goal of this workshop was to review current information on sea turtles with repect to health and identify data gaps. The use of a suite of health assessment indicators will provide insight on the health status of sea turtle populations. Since the relationship of health factors of sea turtles is limited, a seconde workshop was planned. Using a tiered approach, the first workshop we identified and reviewed the available, pertinent baseline information and data gaps. The second workshop will focus on developing the framework for the research plan. The workshops will address the use of integrated set of health parameters; specific objectives are: 1) Identify reliable indicators of health in sea turtles: assess advantages and disadvantages; determine new indicators/biomarkers which may be useful; 2) Review existing sea turtle field sampling projects; 3) Identify field projects suitable for inclusion for health assessment sampling; 4) Identify data gaps, particularly environmental characterization; 5) Identify new health assessment sampling sites, including reference site(s); and 6) Develop integrated five-year research plan, with focus on health assessment of environmental characterization. (PDF contains 174 pages)
Resumo:
Rapid Appraisals of the current fisheries situations of some selected inland water bodies in Nigeria were carried out within the framework of Aquaculture and Inland Fisheries Project (AIFP) Annex II of the National Special Programme for Food Security (NSPFS). This paper presents the results of the fishery assessment of one of the selected inland water bodies (Sabke Lake) in Nigeria with a view to optimizing the fish yield through the adoption of improved culture based fishery techniques and community-based fisheries management. The lake is unmanaged and the fishing pressure was found to be very high. Also a number of fishermen were found using small mesh size nets to crop the juveniles of highly valued fish species for an optimum catch. About 14 fishermen ought to have been engaged in full time fishing activities if the fisheries of this lake is to be managed on a sustainable basis. However, a surplus of over 100 fishermen was recorded actively fishing during the period of the study. The results further revealed that Fisheries Rules and Regulations were not established for the national exploitation and proper management of the fisheries of many inland water bodies including Sabke Lake. All these have a depilatory effect on the abundance and sizes of fish harvested from the nigerian inland water bodies especially Sabke Lake. A community based management system that establishes a participatory involvement of fishermen in the conservation and national exploitation of fisheries resources for their own well being is recommended for Sabke Lake and other inland water bodies in Nigeria
Resumo:
Many modern stock assessment methods provide the machinery for determining the status of a stock in relation to certain reference points and for estimating how quickly a stock can be rebuilt. However, these methods typically require catch data, which are not always available. We introduce a model-based framework for estimating reference points, stock status, and recovery times in situations where catch data and other measures of absolute abundance are unavailable. The specif ic estimator developed is essentially an age-structured production model recast in terms relative to pre-exploitation levels. A Bayesian estimation scheme is adopted to allow the incorporation of pertinent auxiliary information such as might be obtained from meta-analyses of similar stocks or anecdotal observations. The approach is applied to the population of goliath grouper (Epinephelus itajara) off southern Florida, for which there are three indices of relative abundance but no reliable catch data. The results confirm anecdotal accounts of a marked decline in abundance during the 1980s followed by a substantial increase after the harvest of goliath grouper was banned in 1990. The ban appears to have reduced fishing pressure to between 10% and 50% of the levels observed during the 1980s. Nevertheless, the predicted fishing mortality rate under the ban appears to remain substantial, perhaps owing to illegal harvest and depth-related release mortality. As a result, the base model predicts that there is less than a 40% chance that the spawning biomass will recover to a level that would produce a 50% spawning potential ratio.
Resumo:
The organization of coastwide management programs for Atlantic menhaden, Brevoortia tyrannus, and Gulf menhaden, B. patronus, are described. Recent assessments of the status of the Atlantic and Gulf menhaden stocks are summarized. Estimates of population size and fishing mortalities are obtained from virtual population analysis, and are used in determining spawner-recruit relationships, spawning stock ratios, yield-per-recruit, and surplus production. Management issues are addressed in the framework of assessment results.
Resumo:
This Guidance Note presents a simple approach to analyzing the governance context for development of aquatic agricultural systems; it is intended as an aid to action research, and a contribution to effective program planning and evaluation. It provides a brief introduction to the value of assessing governance collaboratively, summarizes an analytical framework, and offers practical guidance on three stages of the process: identifying obstacles and opportunities, debating strategies for influence, and planning collaborative actions.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.
Resumo:
The mission of NOAA’s Office of National Marine Sanctuaries (ONMS) is to serve as the trustee for a system of marine protected areas, to conserve, protect and enhance biodiversity. To assist in accomplishing this mission, the ONMS has developed a partnership with NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch (CCMA-BB) to conduct biogeographic assessments of marine resources within and adjacent to the marine waters of NOAA’s National Marine Sanctuaries (Kendall and Monaco, 2003). Biogeography is the study of spatial and temporal distributions of organisms, their associated habitats, and the historical and biological factors that influence species’ distributions. Biogeography provides a framework to integrate species distributions and life history data with information on the habitats of a region to characterize and assess living marine resources within a sanctuary. The biogeographic data are integrated in a Geographical Information System (GIS) to enable visualization of species’ spatial and temporal patterns, and to predict changes in abundance that may result from a variety of natural and anthropogenic perturbations or management strategies (Monaco et al., 2005; Battista and Monaco, 2004). Defining biogeographic patterns of living marine resources found throughout the Northwestern Hawaiian Islands (NWHI) was identified as a priority activity at a May 2003 workshop designed to outline scientifi c and management information needs for the NWHI (Alexander et al., 2004). NOAA’s Biogeography Branch and the Papahanaumokuakea Marine National Monument (PMNM) under the direction of the ONMS designed and implemented this biogeographic assessment to directly support the research and management needs of the PMNM by providing a suite of spatially-articulated products in map and tabular formats. The major fi ndings of the biogeographic assessment are organized by chapter and listed below.
Resumo:
Between July 2005 and February 2008, ten Catch Assessment Surveys (CASs) were conducted at 54 pre-selected fish landing sites in the Ugandan part of Lake Victoria comprising approximately 10% of all landing sites in each of the 11 districts sharing the lake. The CASs were conducted following regionally harmonised Standard Operating Procedures (SOPs). This report covers the CAS conducted in February 2008 and puts into context the trends generated by results of the previous surveys. The catch rates of Nile perch in gillnetting boats with motor/sail, reduced from 26.9 kg boat-1 day-1 in August 2007 to 22.8 kg boat-1 day-1 in February 2008. Whereas the catch rates of paddle Sesse boats remained more or less the same as in August 2007. The Nile perch catch rates of the long line fishery of the boats using motor/sail was similar, 35 and 36 kg boat-1 day-1 in August 2007 and February 2008 respectively but the catch rates of paddle Sesse boats using long lines showed some more increase from 19 to 22 kg boat (-1) day (-1). In the tilapia fishery, the catch rates of the parachute boats using gillnets showed further decrease in a row from 12.6 kg boat-1 day-1 in December 2006, 11.6 kg boat-1 day-1 in March 2007, 11.2 kg boat-1 day-1 in August 2007 and 10.0 kg boat-1 day-1 in February 2008. The overall impact of reduced catch rates in the predominant effort groups, e.g. gillnetting boats using motor/sail in the Nile perch fishery and Parachute boats using gillnets in the tilapia fishery overshadowed the increases in less dominant effort groups and resulted in the lowest monthly catch estimates recorded in the surveys conducted since 2005. Whereas there was a clear downward trend in the Nile perch catch rates of boats using gillnets, which corroborates with the information of declining stocks from the recent Acoustics surveys, the catch rates in the long line fishery remained stable and even somewhat increasing in the last four surveys. The factors that maintain high catches against reduction of fish biomass in the long line fishery and their effects on sustainability of the Nile perch fishery should be investigated further. The Mukene fishery, characterised by large fluctuations in the catch rates did not show much change in the last two surveys in August 2007 and February 2008 and the annual catch estimates showed an overall increase of 7% from 2005 to 2007. The Mukene fishery in the Ugandan waters of Lake Victoria remained a near shore fishery in which paddle Sesse boats using small seines or scoop nets were the dominant craft.
Report of the hilsa fisheries assessment working group meeting, Kolkata, India, 26-28 November, 2014
Resumo:
The items discussed at the meeting included; capacity development assessment techniques, development of a hilsa fishery management plan; development of a standardised model framework for stock assessment; development of a Strategic Action Plan (SAP) for ecosystem health and resource evaluation; priority fishery management recommendations; and stock status advice for hilsa in BOBLME region .
Resumo:
This research work involved a review of scientific and technical literature on cage based fish culture technology, and assessment of the natural and socio-economic potential of thiS technology. The research also reviewed secondary data on aquaculture production from the pilot cage culture facilities at Jinja; the requirements of key targeted species for cage based fish production - the Nile tilapia; the feed requirements and implication for management; the physiochemical parameters for optimal performance of fish production in cages; and preliminary production and operational costs of cage fish production.