4 resultados para Stress-induced ordering

em Aquatic Commons


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sub lethal (0.2 ppm) mercuric chloride induced stress related histopathological alterations in the epithelial linings of foot (podium) of the edible freshwater mussel Lamellidens marginalis (Lamarck) were studied using histochemical techniques up to 60 days of exposure. The histomorphological changes were manifested only slowly and its intensity was somewhat proportional to the duration of exposure. The immediate response of the exposed mussels was the altered mucous secretion. There was a progressive incorporation of sulphated glycoproteins into the secretory contents of the mucous cells especially in the first half of the experiment. Marked histopathological changes including necrosis, appearance of pyknotic nuclei, sloughing of epithelial cells and appearance of non-tissue spaces, etc., started appearing during the later half of the experiment. The fag end of the experiment, which witnessed prominent histomorphological changes, was accompanied by highly decreased mucous secretion. KEYWORDS: heavy metal toxicity, mercuric chloride, Lamellidens marginalis, freshwater mussel, histopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the effectiveness of Gammarus scope for growth (SfG) as an indicator of water quality. In addition, the link between physiological changes and effects at higher levels of biological organisation is addressed. Exposure to a range of toxicants resulted in decreases in Gammarus SfG which were qualitatively and quantitatively correlated with subsequent reductions in growth and reproduction. Reductions in SfG were due principally to a decrease in energy intake (i.e. feeding rate) rather than an increase in energy expenditure. Gammarus pulex is an important shredder in many stream communities and stressed-induced reductions in its feeding activity were correlated with reductions in the processing of leaf litter by a semi-natural stream community. Hence, changes in the physiological energetics of Gammarus provide a general and sensitive indicator of stress which can be linked to effects at higher levels of biological organisation. Under long-term stress and hence prolonged reductions in SfG, animals may adapt by modifying their life-history strategies and producing fewer, larger offspring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.