20 resultados para Streambank planting
em Aquatic Commons
Resumo:
(PDF has 125 pages.)
Effect of planting pattern on shading and phytoplankton photosynthesis in Bangladesh rice-fish farms
Resumo:
In the present study, a Border Planting (BP) pattern recommended by the Bangladesh Agricultural Research Council was tested against Regular Planting (RP) to assess the effect, if any, on gross phytoplankton photosynthesis and shading. A Wide Planting (WP) pattern was also included in the trial, as an extreme case, to assess the level of photosynthesis that might be obtained if some of the rice yield was sacrificed. Three rice-planting treatments, each with four replicates, using the rice variety BR16, were undertaken: (1) RP, 26 cm between rows N to S and E to W; (2) BP, 20 cm between rows N to S and alternately 21 cm and 36 cm between rows E, to W; and (3) WP, 66 cm between rows N to S and E to W. BP showed no advantage compared to RP, possibly because the rice variety used was short and thus produced relatively little shading. WP did show a benefit for phytoplankton photosynthesis, but this may not generate an increase in fish yield sufficient to justify the negative impact of rice production.
Resumo:
Three men planting out Sea trout ova in a beck in North West England, UK, in 1952. This photo is part of a Photo Album that includes pictures from 1935 to 1954.
Resumo:
The objective of this monitoring project was to determine the baseline condition for a 960-m long stream reach and its associated streamside zone, which terminates at the confluence with the Deschutes River. This stream reach had been damaged heavily in the February 1996 flood and had also received many years of overuse by livestock grazing. The monitoring project was conducted in July 1997 just after installation of riparian exclosure fencing. Future resurvey of the study area will allow determination of progress made in ecological recovery.
Resumo:
Fifteen cooperative fish rearing and planting programs for salmon and steelhead were active from July 1, 1995 through June 30, 1996. For all programs, 134,213 steelhead trout,(Oncorhynchus mykiss), 7,742,577 chinook salmon,(~ tshawytscha),and 25,075 coho salmon(~ kisutch) were planted. (PDF contains 26 pages.)
Resumo:
Fourteen cooperative fish rearing and planting programs for salmon and steelhead were active from July 1, 1996 through June 30, 1997. For all programs, 208,922 steelhead trout, (Oncorhynchus mykiss), 10,334,457 chinook salmon,(O. tshawytscha),and 60,681 coho salmon(O. kisutch) were planted. (PDF contains 24 pages.)
Resumo:
HIGHLIGHTS FOR FY 2008 1. Completed the first of a two-year Gulf sturgeon population study on the Choctawhatchee River, Florida. The sub adult and adult Gulf sturgeon population was estimated at 2,800 fish. 2. Gulf sturgeon eggs were collected at three hard bottom sites in the Apalachicola River, Florida; two sites were previously confirmed spawning areas and one was a newly confirmed spawning area. 3. Documented 55 potential environmental threats to Gulf sturgeon spawning habitat in the Pea River, Florida and Alabama. 4. Assigned the Eglin AFB Road-Stream Crossing Working Group to guide the closure, repair and maintenance of roads and road stream crossings that impact threatened and endangered species. 5. Conducted 81 assessments of fish and stream invertebrates on and in watersheds surrounding Eglin AFB. 6. Provided technical support for the 5-year status review and reclassification proposed rule for the Okaloosa darter. 7. Initiated an intensive population genetic analysis of the Okaloosa darter throughout its range. Tissues from over 200 Okaloosa darters were collected and analyzed. 8. Established a GIS database to serve as a host for data from any sites sampled for mussels in Northeast Gulf of Mexico drainages. 9. Conducted habitat surveys at 115 locations in the Apalachicola River to assess the effects of drought-related mussel mortality and strandings, evaluate habitat conditions, and assess population demography. 10. A land use/aerial imagery threats assessment data analysis was completed for the Chipola River. A total of 266 impoundments/borrow pits and 471 unpaved road crossings were identified among the threats. 11. Okaloosa darters marked with elastomeric dyes were monitored in Mill Creek, Eglin AFB, to determine movement and habitat use following completion of a fish passage project. 3 12. Partners for Fish and Wildlife funded a streambank and riparian restoration project on Econfina Creek consisting of 3,900 feet of streambank fencing to exclude cattle access. One acre of riparian floodplain was planted with native trees. 13. We provided design and on-the-ground assistance for restoring surface hydrology at St. Vincent NWR. The project restored approximately 1.5 miles of tidal stream and 100 acres of wetlands. 14. A study was completed on 11 coastal streams to document large wood debris relationships with fluvial geomorphic characteristics. 15. We developed a Population Viability Analysis model for the fat threeridge mussel to determine current and future risk of extinction. 17. A Gulf Sturgeon Friends Group, “Gulf Sturgeon Preservation Society” was organized in FY 08. 18. Multiple outreach projects were completed to detail aquatic resource conservation needs and opportunities, including National Fishing Week, Earth Day, several festivals and school outreach.
Resumo:
HIGHLIGHTS FOR FY 2003 1. Continued a 3-year threatened Gulf sturgeon population estimate in the Escambia River, Florida and conducted presence-absence surveys in 4 other Florida river systems and 1 bay. 2. Five juvenile Gulf sturgeon collected, near the mouth of the Choctawhatchee River, Florida, were equipped with sonic tags and monitored while over-wintering in Choctawhatchee Bay. 3. Continued to examine Gulf sturgeon marine habitat use. 4. Implemented Gulf Striped Bass Restoration Plan by coordinating the 20th Annual Morone Workshop, leading the technical committee, transporting broodfish, and coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system. 5. Over 73,000 Phase II Gulf striped bass were marked with sequential coded wire tags and stocked in the Apalachicola River. Post-stocking evaluations were conducted at 31 sites. 6. Three stream fisheries assessment s were completed to evaluate the fish community at sites slated for habitat restoration by the Partners for Fish and Wildlife Program (PFW). 7. PFW program identified restoration needs and opportunities for 10 areas. 8. Developed an Unpaved Road Evaluation Handbook. 9. Completed restoration of Chipola River Greenway, Seibenhener Streambank Restoration, Blackwater River State Forest, and Anderson Property. 10. Assessments for fluvial geomorphic conditions for design criteria were completed for 3 projects. 11. Geomorphology in Florida streams initiated development of Rosgen regional curves for Northwest Florida for use by the Florida Department of Transportation. 12. Developed a Memorandum of Understanding between partners for enhancing, protecting, and restoring stream, wetland, and upland habitat in northwest Florida 13. Completed aquatic fauna and fish surveys with new emphasis on integration of data from reach level into watershed and landscape scale and keeping database current. 14. Compliance based sampling of impaired waterbodies on Eglin Air Force Base in conjunction with Florida Department of Environmental Protection for Total Maximum Daily Load development support. 15. Surveyed 20 sites for the federally endangered Okaloosa darter, provided habitat descriptions, worked with partners to implement key recovery tasks and set priorities for restoration. 16. Worked with partners to develop a freshwater mussel survey protocol to provide standard operating procedures for establishing the presence/absence of federally listed mussel species within a Federal project area. 17. GIS database was created to identify all known freshwater mussel records from the northeast Gulf ecosystem. 18. Completed recovery plan for seven freshwater mussels and drafted candidate elevation package for seven additional mussels. Developed proposals to implement recovery plan. 19. Worked with Corps of Engineers and State partners to develop improved reservoir operating policies to benefit both riverine and reservoir fisheries for the ACF river system. 20. Multiple outreach projects were completed to detail aquatic resources conservation opportunities. 21. Multiple stream restoration and watershed management projects initiated or completed (see Appendix A).
Resumo:
Details are given of a study carried out in Nigeria, to introduce the practice of fish-cum-rice culture, using Sarotherodon galilaeus. Two plots each measuring 360m super(2) were used for this study and were compared with the farmer's two plots measuring 300m super(2) and 350m super(2). The plots were modified and had two central canals. Rice seedlings were transplanted into the plots after 19 days using a planting distance of 20 x 20cm. Three rice seedlings were planted per hole, using rice variety FARO 40, and grown for 90 days. About 240 and 180 S. galilaeus fingerlings of mean weight of 30g and 26g were stocked in the two experimental plots, respectively. They were fed with pelleted feed of 25% C.P. and monitored for 100 days. A yield of 22.8kg was obtained in plot A while 15.66kg was obtained in plot B. A rice yield of 250kg (i.e 5 bags) was obtained in each of the plots. The results obtained were compared with plots with no fish
Resumo:
The Burrishoole catchment is situated in County Mayo, on the northwest coast of the Republic of Ireland. Much of the catchment is covered by blanket peat that, in many areas, has become heavily eroded in recent years. This is thought to be due, primarily, to the adverse effects of forestry and agricultural activities in the area. Such activities include ploughing, drainage, the planting and harvesting of trees, and sheep farming, all of which are potentially damaging to such a sensitive landscape if not managed carefully. This article examines the sediment yield and hydrology of the Burrishoole catchment. Flow and sediment concentrations were measured at 8-hourly intervals from 5 February 2001 to 8 November 2001 with an automatic sampler and separate flow gauge, and hourly averages were recorded between 4 July 2002 and 6 September 2002 using an automatic river monitoring system [ARMS]. The authors describe the GIS-based model of soil erosion and transport that was applied to the Burrishoole catchment during this study. The results of these analyses were compared, in a qualitative manner, with the aerial photography available for the Burrishoole catchment to see whether areas that were predicted to contribute large proportions of eroded material to the drainage network corresponded with areas where peat erosion could be identified through photo-interpretation.
Resumo:
As part of the River Lune juvenile salmonid investigation, a number of sites on the River Wenning catchment were electrofished annually from 1981 - 1985. Particularly low Salmon parr populations were evident for much of the Wenning catchment which has caused some concern. All the Wenning catchment electrofishing results are reported in this paper and comparisons are made with designated groups of sites on the remainder of the Lune catchment. These groups of sites are: River Lune and tributaries, upstream Tebay, Upper Middle Lune, Lower Middle Lune, Lower Lune, Birk & Borrow Becks, Chapel & Crosdale Becks, Rawthey system, Barbon & Leek Becks and the Greta system. The general scarcity of Salmonids in large sections of the main river Wenning probably reflects the apparent limited natural spawning areas on the catchment. Details of Salmon fry and ova planting on the Wenning catchment since 1981 have been collated and whilst survival through the 0+ stage appears to be quite good, recruitment to the 1++ stage appears to be poor. Water quality does not appear to be responsible for the very low salmonid densities at some main river sites but is possibly a factor in apparently preventing any Salmon run in Keasden Beck. Recommendations for future Fisheries and Biological work are given.
Resumo:
All species of fish are able to propagate and maintain their numbers provided that no adverse influence occurs to change the compatible environment, the salmon is no exception. Propagation of fish by artificial means has long been a subject of discussion amongst fishery workers and views have been expressed (both favourable and unfavourable) on the merits of the various methods employed. In an attempt to discover whether artificial propagation was necessary and also to find the best methods of propagation to adopt in the various rivers, a phased programme of investigation into natural spawning efficiency and the results obtained by various methods of artificial propagation was started in the Lancashire River Board area during 1957. The object being to seek information on: (1) The survival of ova from natural spawnings to the eyed and alevin stages. (2) The population density of feeding fry (from natural spawnings) at various intervals of development. (3) The viability of green ova and eyed ova- when planted artificially. (4a) The survival to 0+ parr from implants of eyed ova unfed fry and fed fry. (4b) Populations per unit area of 0+ parr from various planting densities of eyed ova, unfed fry and fed fry. Sampling stations were selected on the Rivers Ribble, Lune and Wyre watersheds for the purpose of marking and examination of natural salmon redds.
Resumo:
As a follow up survey, the report assesses Skirden and Swanside Beck (North West England) in order to determine: 1. The status of these systems as salmonid nursery streams. 2. The success of planting with salmon fry and parr, carried our earlier in the year. The report gives methods, results, a summary and the author's recommendations.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.