3 resultados para Stratification sociale

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Inter-American Tropical Tuna Commission (IATTC) staff has been sampling the size distributions of tunas in the eastern Pacific Ocean (EPO) since 1954, and the species composition of the catches since 2000. The IATTC staff use the data from the species composition samples, in conjunction with observer and/or logbook data, and unloading data from the canneries to estimate the total annual catches of yellowfin (Thunnus albacares), skipjack (Katsuwonus pelamis), and bigeye (Thunnus obesus) tunas. These sample data are collected based on a stratified sampling design. I propose an update of the stratification of the EPO into more homogenous areas in order to reduce the variance in the estimates of the total annual catches and incorporate the geographical shifts resulting from the expansion of the floating-object fishery during the 1990s. The sampling model used by the IATTC is a stratified two-stage (cluster) random sampling design with first stage units varying (unequal) in size. The strata are month, area, and set type. Wells, the first cluster stage, are selected to be sampled only if all of the fish were caught in the same month, same area, and same set type. Fish, the second cluster stage, are sampled for lengths, and independently, for species composition of the catch. The EPO is divided into 13 sampling areas, which were defined in 1968, based on the catch distributions of yellowfin and skipjack tunas. This area stratification does not reflect the multi-species, multi-set-type fishery of today. In order to define more homogenous areas, I used agglomerative cluster analysis to look for groupings of the size data and the catch and effort data for 2000–2006. I plotted the results from both datasets against the IATTC Sampling Areas, and then created new areas. I also used the results of the cluster analysis to update the substitution scheme for strata with catch, but no sample. I then calculated the total annual catch (and variance) by species by stratifying the data into new Proposed Sampling Areas and compared the results to those reported by the IATTC. Results showed that re-stratifying the areas produced smaller variances of the catch estimates for some species in some years, but the results were not significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling is a key element in the assessment of any fish stock. It is often one of the most expensive activities of the management process; thus, improved efficiency can result in significant cost savings. In most cases a two-phase sampling strategy is employed. Two commonly used versions of such stratified random schemes were simulated using a test population based on Atlantic cod, Gadus morhua. A 1 otolith per 1 cm length frequency currently used for many flatfish and some smaller gadoids and a 3 otolith per 3 cm length frequency currently used for many of the larger gadoids. No difference was detected in the age composition or mean length at age for either scheme; however, 10 percent fewer otoliths were collected in 1 for 1 sampling than 3 for 3. There was an improvement of between 30 and 60 percent in the coefficient of variation of the estimated catch numbers at age using the 1 for 1 compared with the 3 for 3 stratified sampling. For these reasons and other operational considerations, the 1 for 1 stratified random design of sampling appears to be superior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide, human activity in the watershed has been found to induce lake responses at various levels, including at population and ecosystem scale. Recently, Carignan and Steedman (2000) reported on disruptions of biogeochemical cycles in temperate lakes following watershed deforestation and lor wildfire and Carignan et al., (2000 a, b) concluded that water quality and aquatic biota are strongly influenced by disturbances in the watershed. Similarly, Lake Victoria is no exception as people in its catchment have exploited it for the last hundred years or more, but have now begun to understand the extent to which they have thrown the lake into disorder and how their increasing activity in the watershed have driven some environmental changes within and around the lake.