45 resultados para Strategy management

em Aquatic Commons


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This statement was prepared by the participants of the FAO/NACA-STREAM Workshop on Aquatic Resources and Livelihoods: Connecting Policy and People, 17-19 March 2005, in Los Baños, Laguna, Philippines. This was the concluding event of the FAO Technical Cooperation Program (TCP) project entitled “Assistance in Poverty Alleviation through Improved Aquatic Resources Management in Asia-Pacific.” The purpose of the workshop was to review and share experiences of the NACA-STREAM Initiative, build consensus on the value of livelihoods approaches in aquatic resources management and poverty alleviation, and identify ways of promoting livelihoods approaches throughout the region. (Pdf contains 2 pages).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article outlines the outcome of work that set out to provide one of the specified integral contributions to the overarching objectives of the EU- sponsored LIFE98 project described in this volume. Among others, these included a requirement to marry automatic monitoring and dynamic modelling approaches in the interests of securing better management of water quality in lakes and reservoirs. The particular task given to us was to devise the elements of an active management strategy for the Queen Elizabeth II Reservoir. This is one of the larger reservoirs supplying the population of the London area: after purification and disinfection, its water goes directly to the distribution network and to the consumers. The quality of the water in the reservoir is of primary concern, for the greater is the content of biogenic materials, including phytoplankton, then the more prolonged is the purification and the more expensive is the treatment. Whatever good that phytoplankton may do by way of oxygenation and oxidative purification, it is eventually relegated to an impurity that has to be removed from the final product. Indeed, it has been estimated that the cost of removing algae and microorganisms from water represents about one quarter of its price at the tap. In chemically fertile waters, such as those typifying the resources of the Thames Valley, there is thus a powerful and ongoing incentive to be able to minimise plankton growth in storage reservoirs. Indeed, the Thames Water company and its predecessor undertakings, have a long and impressive history of confronting and quantifying the fundamentals of phytoplankton growth in their reservoirs and of developing strategies for operation and design to combat them. The work to be described here follows in this tradition. However, the use of the model PROTECH-D to investigate present phytoplankton growth patterns in the Queen Elizabeth II Reservoir questioned the interpretation of some of the recent observations. On the other hand, it has reinforced the theories underpinning the original design of this and those Thames-Valley storage reservoirs constructed subsequently. The authors recount these experiences as an example of how simulation models can hone the theoretical base and its application to the practical problems of supplying water of good quality at economic cost, before the engineering is initiated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Kenya, fisheries resource management has been based on the top-down centralized approach since the colonial days. Stakeholders have never been consulted concerning management decisions. The 4-beaches Study was undertaken to investigate the potential for an alternative management system for Lake Victoria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This consultation document sets out the proposed future licensing strategy for the Lune Catchment Abstraction Management Strategy (CAMS) area. Following the three month consultation period, the Environment Agency will determine the final licensing strategy and publish it in the CAMS document. The strategy will provide an indication of whether new abstraction licences are likely to be available and the conditions that should be expected on licences. Water plays a vital role in the Lune catchment, providing water for public supply, supporting recreation, such as angling and canoeing, and providing sustainable flows to preserve numerous designated sites. There is minimal abstraction throughout much of the catchment, apart from the lower reaches of the River Lune. The document is split into five sections relating to the CAMS process. Sections 1 to 4 outline the CAMS process, and Section 5 outlines the proposed licensing strategy for the Lune CAMS areas. It is important to note that this strategy deals with groundwater and surface water abstractions separately; Sections 4 and 5 are split to differentiate between the surface water and groundwater results and strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gillnets are popularly used in commercial fishing on both Lake kioga and lake Victoria. On Lake kioga the legal mesh size is from 4½ (114) upwards while on Lake Victoria, a multifishery lake, various mesh sizes are in operation. However, the fishermen on these lakes still use the smaller meshes to be able to harvest certain categories of fish especially Oreochromis species group whose catch rates are already on the decline due to either use of small mesh size nets, high fishing pressure and to L.Kioga in particular, predation by lates niloticus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lake Albert/Mobutu lies along the Zaire-Uganda border in 43/57 per cent ratio in the faulted depression tending south-west to the north east. It is bounded by latitudes 1o0 n to 2o 20’ N and longitudes 30o 20’ to 31o 20’E. It has a width varying from 35 to 45 km (22 to 28 miles) as measured between the scarps at the lake level. It covers an area of 5600km2 and has a maximum depth of 48m. The major inflow is through the Semiliki, an outflow of Lake Edward, Muzizi and Victoria Nile draining lakes Victoria and Kyoga while the Albert Nile is the outflow. The physical, chemical and biological productivity parameters are summarized in Table 1. The scarp is steep but not sheer and there are at least 4 tracks leading down it to villages on the shore and scarp land scarp is a young one, formed as a result of earth movements of the Pleistocene times, and the numerous streams come down headlong down its thousand feet drop, more often than not in falls (Baker, 1954). Sometimes there appears to be a clean fault; and at other places there is the appearrence of step faulting, although this may be of only a superical nature .The escarpment’s composed of rocks belonging to the pre-Cambrian Basement complex of the content; but the floor of the depression is covered with young sedimentary rocks, known as kaiso beds. In their upper part these latter beds contains many pebbles; whilst low down the occurrence fossiliferous beds is sufficiently rare phenomenon in the interior plateau of Africa. The kaiso beds dated as possibly middle Pleistocene in age, are exposed in various flats on the shore, and they presumably extend under the relatively shallow waters of the lake. A feature of the shore is the development of sandpits and the enclosure of lagoons; and these can be observed in various stages of development at kaiso, Tonya, kibiro, Buhuka and above all, at Butiaba. On an island lake over 1100 km (700 miles) from the shores of the Indian Ocean one can thus study some of the shore-line phenomena usually associated with the sea- coast (Worthington, 1929). In the north, from Butiaba onwards, the flats become wider and from a continuous lowland as the lake shore curves away from the straight edge of the escarpment. At a height of just 610m (2000 feet) above sea-level, the rift valley floor at Butiaba has a mean annual temperature of 25.60c (780 f), from which there is virtually no seasonal variation; and and the mean daily range is only 6.50c (130f) (E.Afr. met. Dept.1953). With a mean annual rainfall of not much more than 762mm (309 inches) and only 92 rain days in ayear, again to judge from Butiaba, conditions in the rift valley are semi-arid; and the vegetation cover consists of grasses and scattered drought-resisting trees and bushes. Only near the stream courses does the vegetation thicken.