5 resultados para Strategy information
em Aquatic Commons
Resumo:
The Strategy on International Fisheries Research's activities on information and aquaculture in Asia, SubSaharan Africa, Latin and North America are presented.
Resumo:
This report describes a surveillance strategy to detect deepwater invasive species in the Northwestern Hawaiian Islands. A need for this strategy was identified in the Papahānaumokuākea Marine National Monument Management Plan and the Monument’s Draft Natural Resources Science Plan. This strategy focuses on detecting two species of concern, the octocoral Carijoa riisei and the red alga Hypnea musciformis. Most research on invasive species in the Hawaiian archipelago has focused on shallow water habitats within the limits of conventional SCUBA (0-30 m). Deeper habitats such as mesophotic reefs are much more difficult to access and consequently little is known about the distribution of deepwater invasive species or their impacts. Recent deepwater (>30 m) sightings of H. musciformis and C. riisei, in and near NWHI, respectively, have prompted a call for further research and surveillance of invasive species in deepwater habitats. This report compiles the most up to date information about these two species of concern in deepwater habitats. A literature search and conversations with subject matter experts was used to identify their current distribution, preferred habitat types, optimal detection methods and ways to efficiently sample the vast extent of NWHI. The proposed sampling strategy prioritizes survey effort where C. riisei and H. musciformis are most likely to be found. At coarse spatial scales (tens to hundreds of kilometers), opportunistic observations and distance from the Main Hawaiian Islands, a principal propagule source, are used to identify high-risk islands and banks. At fine spatial scales (meters to tens of kilometers) a habitat suitability model was developed to identify high-risk habitats. The habitat suitability model focused on habitat preferences of C. riisei, since the species is well studied and adequate data exists to map habitats. There was insufficient information to identify suitable habitat for H. muscifomis. Habitat preferences for the algae are poorly understood and there is a lack of data at relevant spatial scales to map those preferences which are known. The principal habitats identified by the habitat suitability model were ledges and the edges of rugose coral reefs, where the shade loving octocoral would likely be found. Habitat suitability maps were developed for seven atolls and banks to aid in survey site selection. The protocol relied on technical divers to conduct visual surveys of benthic habitats. It was developed to increase the efficiency of surveys, maximize the probability of detection, identify important information relevant to future surveys and standardize results. The strategy, model and protocol were tested during a field mission in 2009 at several atolls and islands in NWHI. The field mission did not detect any invasive species among deepwater habitats and much was learned to improve future surveys. Data gaps and improvements are discussed.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project. The report highlights the successes of this mission.
Resumo:
On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.