10 resultados para Stock-price process
em Aquatic Commons
Resumo:
89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises
Resumo:
89 ripe female brooders of the catfish, Clarias anguillaris (Body wt. Range 150g-1, 200g) were induced to spawn by hormone (Ovaprim) induced natural spawning technique over a period of 10 weeks. Matching ripe males were used for pairing the females at the ratio of two males to a female. Six ranges of brood stock body weights were considered as follows; <200g; 200g-399g; 400g-599g; 600-799g; 800g-999g; > 1000g and the number of fry produced by each female brooder was scored/recorded against the corresponding body weight range. The number of fry per unit quantity of hormone and the cost of production a fry based on the current price of Ovaprim (hormon) were determined so as to ascertain most economic size range. The best and most economic size range was between 400g-599g body weight with about 20,000 fry per ml of hormone and N0.028 per fry, while the females above 1000g gave the poorest results of 9,519 fry per ml of hormone and N0.059 per fry. For optimum production of Clarias anguillaris fry and maximum return on investment female brooders of body weights ranging between 400g-599g are recommended for hormone induced natural breeding exercises
Resumo:
This study was conducted to identify a functioning fingerlings production and delivery system for a sustainable aquaculture development. Data were collected from 234 respondents randomly sampled from a population of 600 fish farmers. Results indicated that farmer-to-farmer was the major source of fingerlings production and distribution system. Although this source accessed disadvantaged groups like the rural based, resource poor, less educated and women, it lacked knowledge on how to produce good quality fingerlings. These results suggest that a decentralized and privatized fingerlings production and delivery system should be promoted. For this system to operate effectively the aquaculture department should first identify potential zones for aquaculture growth and profit motivated fingerlings producers and distributors. Furthermore, the institutional mechanism through which farmer-to-farmer will operate should be identified and strengthened through short and long term training programmes. The government should support the system by providing guidelines for good quality fingerlings management; maintain brood stock parents and technical training in Bangladesh.
Resumo:
Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.
Resumo:
This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existing data collection and analysis programs to provide an adequate knowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
The dynamics of the survival of recruiting fish are analyzed as evolving random processes of aggregation and mortality. The analyses draw on recent advances in the physics of complex networks and, in particular, the scale-free degree distribution arising from growing random networks with preferential attachment of links to nodes. In this study simulations were conducted in which recruiting fish 1) were subjected to mortality by using alternative mortality encounter models and 2) aggregated according to random encounters (two schools randomly encountering one another join into a single school) or preferential attachment (the probability of a successful aggregation of two schools is proportional to the school sizes). The simulations started from either a “disaggregated” (all schools comprised a single fish) or an aggregated initial condition. Results showed the transition of the school-size distribution with preferential attachment evolving toward a scale-free school size distribution, whereas random attachment evolved toward an exponential distribution. Preferential attachment strategies performed better than random attachment strategies in terms of recruitment survival at time when mortality encounters were weighted toward schools rather than to individual fish. Mathematical models were developed whose solutions (either analytic or numerical) mimicked the simulation results. The resulting models included both Beverton-Holt and Ricker-like recruitment, which predict recruitment as a function of initial mean school size as well as initial stock size. Results suggest that school-size distributions during recruitment may provide information on recruitment processes. The models also provide a template for expanding both theoretical and empirical recruitment research.
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.
Resumo:
Stock-rebuilding time isopleths relate constant levels of fishing mortality (F), stock biomass, and management goals to rebuilding times for overfished stocks. We used simulation models with uncertainty about FMSY and variability in annual intrinsic growth rates (ry) to calculate rebuilding time isopleths for Georges Bank yellowtail flounder, Limanda ferruginea, and cowcod rockfish, Sebastes levis, in the Southern California Bight. Stock-rebuilding time distributions from stochastic models were variable and right-skewed, indicating that rebuilding may take less or substantially more time than expected. The probability of long rebuilding times increased with lower biomass, higher F, uncertainty about FMSY, and autocorrelation in ry values. Uncertainty about FMSY had the greatest effect on rebuilding times. Median recovery times from simulations were insensitive to model assumptions about uncertainty and variability, suggesting that median recovery times should be considered in rebuilding plans. Isopleths calculated in previous studies by deterministic models approximate median, rather than mean, rebuilding times. Stochastic models allow managers to specify and evaluate the risk (measured as a probability) of not achieving a rebuilding goal according to schedule. Rebuilding time isopleths can be used for stocks with a range of life histories and can be based on any type of population dynamics model. They are directly applicable with constant F rebuilding plans but are also useful in other cases. We used new algorithms for simulating autocorrelated process errors from a gamma distribution and evaluated sensitivity to statistical distributions assumed for ry. Uncertainty about current biomass and fishing mortality rates can be considered with rebuilding time isopleths in evaluating and designing constant-F rebuilding plans.
Resumo:
Today , Providing drinking water and process water is one of the major problems in most countries ; the surface water often need to be treated to achieve necessary quality, and in this way, technological and also financial difficulties cause great restrictions in operating the treatment units. Although water supply by simple and cheap systems has been one of the important objectives in most scientific and research centers in the world, still a great percent of population in developing countries, especially in rural areas, don't benefit well quality water. One of the big and available sources for providing acceptable water is sea water. There are two ways to treat sea water first evaporation and second reverse osmosis system. Nowadays R.O system has been used for desalination because of low budget price and easily to operate and maintenance. The sea water should be pretreated before R.O plants, because there is some difficulties in raw sea water that can decrease yield point of membranes in R.O system. The subject of this research may be useful in this way, and we hope to be able to achieve complete success in design and construction of useful pretreatment systems for R.O plant. One of the most important units in the sea water pretreatment plant is filtration, the conventional method for filtration is pressurized sand filters, and the subject of this research is about new filtration which is called continuous back wash sand filtration (CBWSF). The CBWSF designed and tested in this research may be used more economically with less difficulty. It consists two main parts first shell body and second central part comprising of airlift pump, raw water feeding pipe, air supply hose, backwash chamber and sand washer as well as inlet and outlet connections. The CBWSF is a continuously operating filter, i.e. the filter does not have to be taken out of operation for backwashing or cleaning. Inlet water is fed through the sand bed while the sand bed is moving downwards. The water gets filtered while the sand becomes dirty. Simultaneously, the dirty sand is cleaned in the sand washer and the suspended solids are discharged in backwash water. We analyze the behavior of CBWSF in pretreatment of sea water instead of pressurized sand filter. There is one important factor which is not suitable for R.O membranes, it is bio-fouling. This factor is defined by Silt Density Index (SDI).measured by SDI. In this research has been focused on decreasing of SDI and NTU. Based on this goal, the prototype of pretreatment had been designed and manufactured to test. The system design was done mainly by using the design fundamentals of CBWSF. The automatic backwash sand filter can be used in small and also big water supply schemes. In big water treatment plants, the units of filters perform the filtration and backwash stages separately, and in small treatment plants, the unit is usually compacted to achieve less energy consumption. The analysis of the system showed that it may be used feasibly for water treating, especially for limited population. The construction is rapid, simple and economic, and its performance is high enough because no mobile mechanical part is used in it, so it may be proposed as an effective method to improve the water quality and consequently the hygiene level in the remote places of the country.