2 resultados para Stochastic Frontier

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the technical efficiency in artisanal fisheries in Lagos State of Nigeria. The study employed a two stage random sampling procedure for the selection of 120 respondents. The analytical techniques involved descriptive statistics and estimation of technical efficiency following maximum likelihood estimation (MLE) procedure available in FRONTIER 4.1. The MLE result of the stochastic frontier production function showed that hired labour, cost of repair and capital items are critical factors that influences productivity of artisanal fishermen with the coefficient of hired labour being highly elastic. This implies that employing more labour will significantly increase the catch in the study area. The predicted farm efficiency with an average value of 0.92 showed that there is a marginal potential of about 8 percent to increase the catch, hence the income of the fishermen. The study further examined the factors that influence productivity of fishermen in the study area. Year of education, mode of operation and frequency of fishing have important implication on the technical efficiency of fishermen in the study area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a Monte Carlo representation of the long-term inter-annual variability of monthly snowfall on a detailed (1 km) grid of points throughout the southwest. An extension of the local climate model of the southwestern United States (Stamm and Craig 1992) provides spatially based estimates of mean and variance of monthly temperature and precipitation. The mean is the expected value from a canonical regression using independent variables that represent controls on climate in this area, including orography. Variance is computed as the standard error of the prediction and provides site-specific measures of (1) natural sources of variation and (2) errors due to limitations of the data and poor distribution of climate stations. Simulation of monthly temperature and precipitation over a sequence of years is achieved by drawing from a bivariate normal distribution. The conditional expectation of precipitation. given temperature in each month, is the basis of a numerical integration of the normal probability distribution of log precipitation below a threshold temperature (3°C) to determine snowfall as a percent of total precipitation. Snowfall predictions are tested at stations for which long-term records are available. At Donner Memorial State Park (elevation 1811 meters) a 34-year simulation - matching the length of instrumental record - is within 15 percent of observed for mean annual snowfall. We also compute resulting snowpack using a variation of the model of Martinec et al. (1983). This allows additional tests by examining spatial patterns of predicted snowfall and snowpack and their hydrologic implications.