1 resultado para Statistical-models
em Aquatic Commons
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (4)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (23)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (148)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (73)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (12)
- Collection Of Biostatistics Research Archive (70)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (47)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (7)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (17)
- DigitalCommons@The Texas Medical Center (24)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (4)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (5)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (13)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (75)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (51)
- Université de Montréal (1)
- Université de Montréal, Canada (22)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (3)
- University of Michigan (4)
- University of Queensland eSpace - Australia (63)
- University of Washington (8)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Sea- level variations have a significant impact on coastal areas. Prediction of sea level variations expected from the pre most critical information needs associated with the sea environment. For this, various methods exist. In this study, on the northern coast of the Persian Gulf have been studied relation to the effectiveness of parameters such as pressure, temperature and wind speed on sea leve and associated with global parameters such as the North Atlantic Oscillation index and NAO index and present statistic models for prediction of sea level. In the next step by using artificial neural network predict sea level for first in this region. Then compared results of the models. Prediction using statistical models estimated in terms correlation coefficient R = 0.84 and root mean square error (RMS) 21.9 cm for the Bushehr station, and R = 0.85 and root mean square error (RMS) 48.4 cm for Rajai station, While neural network used to have 4 layers and each middle layer six neurons is best for prediction and produces the results reliably in terms of correlation coefficient with R = 0.90126 and the root mean square error (RMS) 13.7 cm for the Bushehr station, and R = 0.93916 and the root mean square error (RMS) 22.6 cm for Rajai station. Therefore, the proposed methodology could be successfully used in the study area.