23 resultados para Stage-fright
em Aquatic Commons
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
This report to the Thames Water Authority and Central Water Planning Unit is on research carried out in conjunction with the Stage 1 Group Pumping Test of five boreholes in the upper Lambourn Group for a period of three months in September, October and November 1975. The aim of the study was to assess the ecological effects of the pumpin g of five bore-holes in the upper Lambourn. That is, to determine how the seasonal sequence of ecological events in the river differed from what would hav e occurred had no pumping taken place. Since this 'experiment' has no control it is not possible to make a direct assessment. Nevertheless, by careful monitoring of ecological events before, during and after the pumping it is possible to document changes in th e river and by reference to the data already available for the Rive r Lambourn, normal seasonal changes in the flora and fauna can be separated from changes which may be attributable to the pumping and subsequent events.
Resumo:
It is generally accepted by fish culturists that salmonid eggs are sensitive to mechanical shock and that the sensitivity varies with the stage of development of the eggs. In general, the period of greatest sensitivity is thought to occur between fertilization and ”eyeing”. However, it is reasonable to expect that, during a period (perhaps of several hours) following fertilization, sensitivity will be low because in nature during this period the eggs may be subject to some mechanical shock caused by the parent fish covering them with gravel. In 1983-4 and 1984-5 experiments were performed on brown trout (Salmo trutta L.) eggs to examine the effect of a standard mechanical shock (c. 2,500 eggs in 1983-4 and c. 8,400 eggs in 1984-5) at various stages of development upon survival to hatching and time of hatching.The results of these experiments are reported in this study.
Resumo:
Ichthyoplankton surveys have been used to provide an independent estimate of adult spawning biomass of commercially exploited species and to further our understanding of the recruitment processes in the early life stages. However, predicting recruitment has been difficult because of the complex interaction of physical and biological processes operating at different spatial and temporal scales that can occur at the different life stages. A model of first-year life-stage recruitment was applied to Georges Bank Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks over the years 1977–2004 by using environmental and densitydependent relationships. The best lifestage mortality relationships for eggs, larvae, pelagic juveniles, and demersal juveniles were first determined by hindcasting recruitment estimates based on egg and larval abundance and mortality rates derived from two intensive sampling periods, 1977–87 and 1995–99. A wind-driven egg mortality relationship was used to estimate losses due to transport off the bank, and a wind-stress larval mortality relationship was derived from feeding and survival studies. A simple metric for the density-dependent effects of Atlantic cod was used for both Atlantic cod and haddock. These life stage proxies were then applied to the virtual population analysis (VPA) derived annual egg abundances to predict age-1 recruitment. Best models were determined from the correlation of predicted and VPA-derived age-1 abundance. The larval stage was the most quantifiable of any stage from surveys, whereas abundance estimates of the demersal juvenile stage were not available because of undersampling. Attempts to forecast recruitment from spawning stock biomass or egg abundance, however, will always be poor because of variable egg survival.
Resumo:
The stage-specific distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the southeastern Bering Sea was examined with collections made in mid-May in 2002, 2003, 2005, and 2006. Eggs in the early stages of development were found primarily offshore of the 40-m isobath. Eggs in the middle and late stages of development were found inshore and offshore of the 40-m isobath. There was some evidence that early-stage eggs occur deeper in the water column than late-stage eggs, although year-to-year variability in that trend was observed. Most eggs were in the later stages of development; therefore the majority of spawning is estimated to have occurred a few weeks before collection—probably April—and may be highly synchronized among local spawning areas. Results indicate that sampling with continuous underway fish egg collectors(CUFES) should be supplemented with sampling of the entire water column to ensure adequate samples of all egg stages of Alaska plaice. Data presented offer new information on the stage-dependent horizontal and vertical distribution of Alaska plaice eggs in the Bering Sea and provide further evidence that the early life history stages of this species are vulnerable to near-surface variations in hydrographical conditions and climate forcing.
Resumo:
We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.
Resumo:
This is the Habitats regulations for stage 3 assessments: radioactive substances authorisations report from the Environment Agency, published on October 2003. The report focuses on the stage 3 assessments of radioactive substances authorisations in UK (to take place over the next five years, starting in 2003), which may have a potential impact on European designated Natura 2000 sites such Special Protection Areas (SPA), Special Areas of Conservation (SAC); and thus require further detailed assessment. This Environment Agency R&D project was commissioned to ERC, University o f Liverpool, in conjunction with Westlakes Scientific Consulting and the Centre for Ecology and Hydrology, as part o f the agency's preparation for the Stage 3 Assessments o f radioactive substances authorisations. The aim was to prepare site information sheets containing all data relevant for individual Natura 2000 sites needing Stage 3 Assessment and to stylise and represent species that require protection under the Habitats Regulations by the reference organism geometries listed in R&D Publication 128 (Copplestone et al., 2001).
Resumo:
Estimates of instantaneous mortality rates (Z) and annual apparent survival probabilities (Φ) were generated from catch-curve analyses for oceanic-stage juvenile loggerheads (Caretta caretta) in the waters of the Azores. Two age distributions were analyzed: the “total sample” of 1600 loggerheads primarily captured by sighting and dipnetting from a variety of vessels in the Azores between 1984 and 1995 and the “tuna sample” of 733 loggerheads (a subset of the total sample) captured by sighting and dipnetting from vessels in the commercial tuna fleet in the Azores between 1990 and 1992. Because loggerhead sea turtles begin to emigrate from oceanic to neritic habitats at age 7, the best estimates of instantaneous mortality rate (0.094) and annual survival probability (0.911) not confounded with permanent emigration were generated for age classes 2 through 6. These estimates must be interpreted with caution because of the assumptions upon which catch-curve analyses are based. However, these are the first directly derived estimates of mortality and survival probabilities for oceanic-stage sea turtles. Estimation of survival probabilities was identified as “an immediate and critical requirement” in 2000 by the Turtle Expert Working Group of the U.S. National Marine Fisheries Service.
Resumo:
Light traps and channel nets are fixed-position devices that involve active and passive sampling, respectively, in the collection of settlement-stage larvae of coral-reef fishes. We compared the abundance, taxonomic composition, and size of such larvae caught by each device deployed simultaneously near two sites that differed substantially in current velocity. Light traps were more selective taxonomically, and the two sampling devices differed significantly in the abundance but not size of taxa caught. Most importantly, light traps and channel nets differed greatly in their catch efficiency between sites: light traps were ineffective in collecting larvae at the relatively high-current site, and channel nets were less efficient in collecting larvae at the low-current site. Use of only one of these sampling methods would clearly result in biased and inaccurate estimates of the spatial variation in larval abundance among locations that differ in current velocity. When selecting a larval sampling device, one must consider not only how well a particular taxon may be represented, but also the environmental conditions under which the device will be deployed.