17 resultados para Spine biomechanics
em Aquatic Commons
Resumo:
In March 2006, a dead, male bottlenose dolphin (Tursiops truncatus) was found in the salt marsh in Charleston, South Carolina, United States. During necropsy, an enterolith was found completely obstructing the intestinal lumen. Further examination of the enterolith revealed a stingray spine nidus. Most terrestrial enteroliths are composed primarily of struvite (magnesium ammonium phosphate); however, the majority of the enterolith discovered in the stranded dolphin was composed of calcium phosphate carbonate. This case provides an interesting comparison of the variation in the mineral composition between terrestrial and marine enteroliths.
Resumo:
Shortnose sturgeon (Acipenser brevirostrum), an endangered species, has experienced a several-fold increase in abundance in the Hudson River in recent decades. This population growth followed a substantial improvement in water quality during the 1970s to a large portion (c. 40%) of the species' summertime nursery area. Age structure and growth were investigated to evaluate the hypothesis that improvements in water quality stimulated population recovery through increased survival of young of the year juveniles. Specimens were captured using gill nets bi-monthly from November 2003 to November 2004 (n = 596). Annuli in fin spine sections were used to generate estimates of sturgeon age. Based upon a marginal increment analysis, annuli were determined to form at an annual rate. Age determinations yielded a catch composed of age 5-30 years for sizes 49-105cm Total Length (n = 554). Individual growth rate (von Bertalanffy coefficients: TL, = 1045mm, K = 0.07) for the population was similar to previous growth estimates within the Hudson River as well as proximal estuaries. Hindcast year-class strengths, based upon a recent stock assessment (Bain et al. 2000) and corrected for gill net mesh selectivity and cumulative mortality indicated high recruitments (28,000-43,000 yearlings)during 1986-1992, which were preceded and succeeded by c.5-year periods of lower recruitment (5,000-1 5,000 yearlings). Recruitment patterns were corroborated by trends in shortnose sturgeon bycatch from a Hudson utilities-sponsored monitoring program. Results indicated that Hudson River shortnose sturgeon abundance increased due to the formation of several strong year-classes occurring about five years subsequent to improved water quality in important nursery and forage habitats in the upper Hudson River estuary. (PDF contains 108 pages.)
Resumo:
Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively.
Resumo:
Larvae of the genus Icelinus are collected more frequently than any other sculpin larvae in ichthyoplankton surveys in the Gulf of Alaska and Bering Sea, and larvae of the northern sculpin (Icelinus borealis) are commonly found in the ichthyofauna in both regions. Northern sculpin are geographically isolated north of the Aleutian Islands, Alaska, which allows for a definitive description of its early life history development in the Bering Sea. A combination of morphological characters, pigmentation, preopercular spine pattern, meristic counts, and squamation in later developmental stages is essential to identify Icelinus to the species level. Larvae of northern sculpin have 35–36 myomeres, pelvic fins with one spine and two rays, a bony preopercular shelf, four preopercular spines, 3–14 irregular postanal ventral melanophores, few, if any, melanophores ventrally on the gut, and in larger specimens, two rows of ctenoid scales directly beneath the dorsal fins extending onto the caudal peduncle. The taxonomic characters of the larvae of northern sculpin in this study may help differentiate northern sculpin larvae from its congeners, and other sympatric sculpin larvae, and further aid in solving complex systematic relationships within the family Cottidae.
Resumo:
The penpoint gunnel (Apodichthys flavidus) is a member of the perciform family Pholidae. Pholids, commonly referred to as gunnels, are eel-like fishes that inhabit the rocky intertidal and subtidal regions of the northern oceans and are often associated with macroalgae, such as Fucus spp. or kelp (Watson, 1996). Gunnels are ecologically important forage fishes that form part of the diet of birds and commercially important groundfish species (Hobson and Sealy, 1985; NMFS1; Golet et al., 2000). The diet of A. flavidus and other pholids comprises primarily harpactacoid copepods, gammarid amphipods, isopods, and other crustaceans (Cross, 1981). Apodichthys flavidus ranges along the west coast of North America from southern California to the Gulf of Alaska (Mecklenburg et al., 2002). Adult A. flavidus are distinguished from other pholids by their total vertebral counts, the presence of a thick and grooved first anal spine, a preanal length that is approximately 60% standard length (SL), and a dark green to light olive coloration (Yatsu, 1981). It is one of the largest pholids (up to 46 cm) and is important in the live fish trade for both home and public aquaria (Froese and Pauly2).
Resumo:
Psednos rossi new species (Teleostei: Liparidae) is described from two specimens collected in the North Atlantic Ocean off Cape Hatteras, North Carolina, at depths of 500–674 m. Psednos rossi belongs to the P. christinae group, which includes six other species and is characterized by 46–47 vertebrae and the absence of a coronal pore. Psednos rossi differs from those six species by having characters unique within the genus: straight spine, body not humpbacked at the occiput, and a very large mouth with a vertical oral cleft. Other distinguishing characters include a notched pectoral fin with 15–16 rays, eye 17–19% SL, and color in life orange-rose. With P. rossi, the genus Psednos as currently known includes 26 described and five undescribed species of small meso- or bathypelagic liparids from the Atlantic, Pacific, and Indian Oceans.
Resumo:
Age and growth of sailfish (Istiophorus platypterus) in waters off eastern Taiwan were examined from counts of growth rings on cross sections of the fourth spine of the first dorsal fin. Length and weight data and the dorsal fin spines were collected monthly at the fishing port of Shinkang (southeast of Taiwan) from July 1998 to August 1999. In total, 1166 dorsal fins were collected, of which 1135 (97%) (699 males and 436 females) were aged successfully. Trends in the monthly mean marginal increment ratio indicated that growth rings are formed once a year. Two methods were used to back-calculate the length of presumed ages, and growth was described by using the standard von Bertalanffy growth function and the Richards function. The most reasonable and conservative description of growth assumes that length-at-age follows the Richards function and that the relationship between spine radius and lower jaw fork length (LJFL) follows a power function. Growth differed significantly between the sexes; females grew faster and reached larger sizes than did males. The maximum sizes in our sample were 232 cm LJFL for female and 221 cm LJFL for male.
Resumo:
As one facet of an effort to tie the pollen record of central Gulf of California deep cores to modern analogs, pollen was analyzed in the uppermost 150-200 years of varved core 7807-1410 taken nearby. Sampling at 2- to 8-year resolution yielded a noncomplacent record, suggesting pollen in these sediments may be a potential high resolution proxy record of short-term climatic events. The pollen spectrum as a whole matches that of upper-most DSDP Site 480 (means of all samples). Lack of a ratio or influx shift following damming of local rivers and a surplus of low-spine Compositae pollen relative to mainland sites support Baumgartner's theory that terrigenous influx to the site is largely aeolian and also suggest that a significant fraction of the pollen influx may come from Baja California.
Resumo:
The larval ontogeny of a developmental series (1.2-8.3mm body length, BL) of Synagrops philippinensis from Kagoshima Bay, southern Japan is described and illustrated. The yolk was completely absorbed in larva of ≥1.5 mm BL. Notochord flexion commenced at about 3.5mm BL and was completed by about 4.0-4.5mm BL. S. philippinensis larvae were distinguished from their congeners based on melanophore patterns, head spination and fin spines and rays. Larvae of 7.5-8.3 mm BL were characterized by anteriorly serrated pelvic spine, two anal spines, nine inner preopercular spines and no melanophore on lateral side of the caudal peduncle; 7.0 to 7.5mm BL larvae by the above characters except serration on pelvic spine; and yolk-sac, pre-flexion, flexing and post-flexion larvae up to 7.0mm BL by unique melanophores on lower lobe of pectoral finfold/fin.
Resumo:
The defensive spines of fifteen Malayan freshwater fishes have been studied morphologically. The classification of spines has been slightly modified from the previous work of Fernando and Fernando (1960). They are divided into simple, denticle-bearing and venom-carrying. The simple spines are further sub-divided into single and multiple and the denticle-bearing into Bagriid and Clariid types. The latter agree morphologically with the venom-carrying spines of previously studied forms and may be a degenerate condition. Simple spines occur singly in the Cyprinidae where they are found at the anterior end of the dorsal fin. A spine of similar structure occurs in the catfish Glyptothorax. In the families Anabantidae, Cichlidae and Mastacenbelidae simple spines occur as a series. Denticle-bearing spines occur in the catfishes (Order-Nematognathi). Those having denticles on one face occur in the Bagridae, Siluridae, Sisoridae, and Akysidae. They are referred to as Bagriid type. In the other type denticles occur on the anterior and posterior faces of the spine. They are referred to as Clariid type. None of the Malayan species studied had venom-carrying spines and they are unlikely to be found in the freshwater species. The functioning of the defensive mechanism whose morphological bases are spines is discussed and the relation between the size and habitat on the effectiveness of the spines is mentioned. The evolution of defensive spines is discussed briefly.
Resumo:
Four zoeal stages and one megalopal stage were identified in laboratory reared semiterrestrial mangrove sesarmine crab Chasmagnathus convexus. At an average salinity and temperature of 20±1% and 19.2±0.2°C, the megalopa was attained 24 days after hatching. Morphologically, the first zoae of C. convexz1s is very similar to those of other species of the genus Chasmagnathus as well as species of the genus Helice, in that view all share the following characteristics: lateral spine on the carapace, three pairs of setae on the posterior margin of the telson furca, one plus five setae on the endopod of the maxillule, and two plus two setae on the endopod of the maxilla. The differences between the first zoea and megalopa of and those of its congeners are discussed.