5 resultados para Spatial data mining
em Aquatic Commons
Resumo:
Washington depends on a healthy coastal and marine ecosystem to maintain a thriving economy and vibrant communities. These ecosystems support critical habitats for wildlife and a growing number of often competing ocean activities, such as fishing, transportation, aquaculture, recreation, and energy production. Planners, policy makers and resource managers are being challenged to sustainably balance ocean uses, and environmental conservation in a finite space and with limited information. This balancing act can be supported by spatial planning. Marine spatial planning (MSP) is a planning process that enables integrated, forward looking, and consistent decision making on the human uses of the oceans and coasts. It can improve marine resource management by planning for human uses in locations that reduce conflict, increase certainty, and support a balance among social, economic, and ecological benefits we receive from ocean resources. In March 2010, the Washington state legislature enacted a marine spatial planning law (RCW §43.372) to address resource use conflicts in Washington waters. In 2011, a report to the legislature and a workshop on human use data provided guidance for the marine spatial planning process. The report outlines a set of recommendations for the State to effectively undertake marine spatial planning and this work plan will support some of these recommendations, such as: federal integration, regional coordination, developing mechanisms to integrate scientific and technical expertise, developing data standards, and accessing and sharing spatial data. In 2012 the Governor amended the existing law to focus funding on mapping and ecosystem assessments for Washington’s Pacific coast and the legislature provided $2.1 million in funds to begin marine spatial planning off Washington’s coast. The funds are appropriated through the Washington Department of Natural Resources Marine Resources Stewardship Account with coordination among the State Ocean Caucus, the four Coastal Treaty Tribes, four coastal Marine Resource Committees and the newly formed stakeholder body, the Washington Coastal Marine Advisory Council.
Resumo:
(Document pdf contains 193 pages) Executive Summary (pdf, < 0.1 Mb) 1. Introduction (pdf, 0.2 Mb) 1.1 Data sharing, international boundaries and large marine ecosystems 2. Objectives (pdf, 0.3 Mb) 3. Background (pdf, < 0.1 Mb) 3.1 North Pacific Ecosystem Metadatabase 3.2 First federation effort: NPEM and the Korea Oceanographic Data Center 3.2 Continuing effort: Adding Japan’s Marine Information Research Center 4. Metadata Standards (pdf, < 0.1 Mb) 4.1 Directory Interchange Format 4.2 Ecological Metadata Language 4.3 Dublin Core 4.3.1. Elements of DC 4.4 Federal Geographic Data Committee 4.5 The ISO 19115 Metadata Standard 4.6 Metadata stylesheets 4.7 Crosswalks 4.8 Tools for creating metadata 5. Communication Protocols (pdf, < 0.1 Mb) 5.1 Z39.50 5.1.1. What does Z39.50 do? 5.1.2. Isite 6. Clearinghouses (pdf, < 0.1 Mb) 7. Methodology (pdf, 0.2 Mb) 7.1 FGDC metadata 7.1.1. Main sections 7.1.2. Supporting sections 7.1.3. Metadata validation 7.2 Getting a copy of Isite 7.3 NSDI Clearinghouse 8. Server Configuration and Technical Issues (pdf, 0.4 Mb) 8.1 Hardware recommendations 8.2 Operating system – Red Hat Linux Fedora 8.3 Web services – Apache HTTP Server version 2.2.3 8.4 Create and validate FGDC-compliant Metadata in XML format 8.5 Obtaining, installing and configuring Isite for UNIX/Linux 8.5.1. Download the appropriate Isite software 8.5.2. Untar the file 8.5.3. Name your database 8.5.4. The zserver.ini file 8.5.5. The sapi.ini file 8.5.6. Indexing metadata 8.5.7. Start the Clearinghouse Server process 8.5.8. Testing the zserver installation 8.6 Registering with NSDI Clearinghouse 8.7 Security issues 9. Search Tutorial and Examples (pdf, 1 Mb) 9.1 Legacy NSDI Clearinghouse search interface 9.2 New GeoNetwork search interface 10. Challenges (pdf, < 0.1 Mb) 11. Emerging Standards (pdf, < 0.1 Mb) 12. Future Activity (pdf, < 0.1 Mb) 13. Acknowledgments (pdf, < 0.1 Mb) 14. References (pdf, < 0.1 Mb) 15. Acronyms (pdf, < 0.1 Mb) 16. Appendices 16.1. KODC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.1.1. Seattle meeting agenda, August 22–23, 2005 16.1.2. Seattle meeting minutes, August 22–23, 2005 16.1.3. Busan meeting agenda, October 10–11, 2005 16.1.4. Busan meeting minutes, October 10–11, 2005 16.2. MIRC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.2.1. Seattle Meeting agenda, August 14-15, 2006 16.2.2. Seattle meeting minutes, August 14–15, 2006 16.2.3. Tokyo meeting agenda, October 19–20, 2006 16.2.4. Tokyo, meeting minutes, October 19–20, 2006 16.3. XML stylesheet conversion crosswalks (pdf, < 0.1 Mb) 16.3.1. FGDCI to DIF stylesheet converter 16.3.2. DIF to FGDCI stylesheet converter 16.3.3. String-modified stylesheet 16.4. FGDC Metadata Standard (pdf, 0.1 Mb) 16.4.1. Overall structure 16.4.2. Section 1: Identification information 16.4.3. Section 2: Data quality information 16.4.4. Section 3: Spatial data organization information 16.4.5. Section 4: Spatial reference information 16.4.6. Section 5: Entity and attribute information 16.4.7. Section 6: Distribution information 16.4.8. Section 7: Metadata reference information 16.4.9. Sections 8, 9 and 10: Citation information, time period information, and contact information 16.5. Images of the Isite server directory structure and the files contained in each subdirectory after Isite installation (pdf, 0.2 Mb) 16.6 Listing of NPEM’s Isite configuration files (pdf, < 0.1 Mb) 16.6.1. zserver.ini 16.6.2. sapi.ini 16.7 Java program to extract records from the NPEM metadatabase and write one XML file for each record (pdf, < 0.1 Mb) 16.8 Java program to execute the metadata extraction program (pdf, < 0.1 Mb) A1 Addendum 1: Instructions for Isite for Windows (pdf, 0.6 Mb) A2 Addendum 2: Instructions for Isite for Windows ADHOST (pdf, 0.3 Mb)
Resumo:
This report describes cases relating to the management of national marine sanctuaries in which certain scientific information was required so managers could make decisions that effectively protected trust resources. The cases presented represent only a fraction of difficult issues that marine sanctuary managers deal with daily. They include, among others, problems related to wildlife disturbance, vessel routing, marine reserve placement, watershed management, oil spill response, and habitat restoration. Scientific approaches to address these problems vary significantly, and include literature surveys, data mining, field studies (monitoring, mapping, observations, and measurement), geospatial and biogeographic analysis, and modeling. In most cases there is also an element of expert consultation and collaboration among multiple partners, agencies with resource protection responsibilities, and other users and stakeholders. The resulting management responses may involve direct intervention (e.g., for spill response or habitat restoration issues), proposal of boundary alternatives for marine sanctuaries or reserves, changes in agency policy or regulations, making recommendations to other agencies with resource protection responsibilities, proposing changes to international or domestic shipping rules, or development of new education or outreach programs. (PDF contains 37 pages.)
Resumo:
As academic libraries are increasingly supported by a matrix of databases functions, the use of data mining and visualization techniques offer significant potential for future collection development and service initiatives based on quantifiable data. While data collection techniques are still not standardized and results may be skewed because of granularity problems, faulty algorithms, and a host of other factors, useful baseline data is extractable and broad trends can be identified. The purpose of the current study is to provide an initial assessment of data associated with science monograph collection at the Marston Science Library (MSL), University of Florida. These sciences fall within the major Library of Congress Classification schedules of Q, S, and T, excluding R, TN, TR, and TT. Overall strategy of this project is to look at the potential science audiences within the university community and analyze data related to purchasing and circulation patterns, e-book usage, and interlibrary loan statistics. While a longitudinal study from 2004 to the present would be ideal, this paper presents the results from the academic year July 1, 2008 to June 30, 2009 which was chosen as the pilot period because all data reservoirs identified above were available.
Resumo:
This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more comprehensive approach to policy and decision-making affecting coastal ecosystems as well as provide an account of valued services that have heretofore been largely unrecognized. Interim research products, including updated and integrated spatial data, models and model frameworks, and interactive decision support systems will be demonstrated to engage potential users and to elicit feedback. It is anticipated that the near-term impact of the projects will be to increase the awareness by coastal communities and coastal managers of the implications of their actions and to foster partnerships for ecosystem services research and applications. (PDF contains 4 pages)