255 resultados para Southwest Atlantic
em Aquatic Commons
Resumo:
In the present paper the first results on the food and feeding habityas of hake in the region of the Argentinean continental slope are given. The data were obtained from the hake sampling made on board of the German research ship "Walther Herwig" during his first fishing exploratory trip in the Southwest Atlantic and from the investigation on the collected hake's stomachs.
Resumo:
Argentine hake (Merluccius hubbsi) inhabit waters of the Southwest Atlantic Ocean between 22° and 55°S, at depths ranging from 50 to 500 m (Cousseau and Perrota, 1998). This species has historically been among the more abundant fish resources in the Argentine Sea, where its biomass has ranged between one and two million metric tons annually since 1986 (Aubone et al., 2000). In this area, there are two identified fishing stocks, limited by the 41°S parallel. The southern group (Patagonian stock) is the more important with an abundance of about 85% of the total biomass estimated for this species in 1999 (Aubone et al., 2000). During the late 1990s, the spawning biomass of both stocks and their recruitment indices declined drastically, both of which were attributed to an increase in exploitation (Aubone et al., 2000).
Resumo:
The present work deals with the biological study of the squid Illex illecebrosus argentinus of the Buenos Aires area (Argentina) in the southwest Atlantic ocean. According to recent research (Voss, pers. comm.) the squid obtained in commercial fishing in the waters off Buenos Aires Province (Castellanos), which in proper of the S.W. Atlantic. The material studied comes from commercial fishing done in in two sectors: one ranging from 36~' to 37~' S, and the other from 39~' to 42~' S in latitude, while both extend from 55~' to 62~' W in longitude. The fishing area varies during the years, being located more towards the North in summer and more towards the South in winter, following the fishing of hake. The number of individuals studied was 186. Their total length ranged from 195 mm to 670 mm for both sexes. The sampling showed that the males had lesser length and weight than the females: that is, a secondary sexual dimorphism was observed. At the length of 240 mm the squid reaches its sexual maturity. Sexual activity is observed the year around, but not simultaneously for the whole population, that is to say, spawning does not take place en masse but, on the contrary, it occurs during a prolonged period. In summer, from December to March, the greatest spawning period is observed. This takes place in the same habitat for the whole squid population. The squid herein studied is a cold water species, the water temperature ranging from 5~' to 12~' C in the sites of the largest catches. The squid is caught at depths ranging from 7 to 250 meters with a trawl net. In Patagonian waters, somewhat smaller individual are caught with 'poteras' at depths ranging from 1 to 8 fathoms.
Resumo:
This work is based on the analysis of 420 planktonic samples of 7 oceanopraphic cruises distributed over the Argentine, Uruguayan and South brasilian continental shelf (SW Atlantic ocean), as well as from some oceanic sectors, adjacent to the continental slope. Vertical hauls were performed in all stations from 100 m depth to surface, except in the Walter Herwig cruise (where vertical hauls were predominantly performed out of slope sectors, between 300 and 500 m depth to surface) and Productividad cruise in which only surface waters were hauled. A list of 27 species are determined, corresponding to 5 families: Iospilidae (3 species), Lopadorrhynchidae (4), Alciopidae (9), Typhloscolecidae (5) and Tomopteridae (6). Larvae and epitokous forms of benthonic species are not taken into account. The genus Iospilus is revised, Pariospilus and Iospilopsis being considered their synonyms; the identity of Pariospilus affinis Viguier is maintained, being transferred to the genus Iospilus. The species Vanadis studeri Apstein is redescribed and its synonymy is established. The taxonomic value of the apical glands of Tomopteris species is discussed and some specimens are found to coincide with T. kefersteini in relation to the mentioned glands. All the species found in this work are described and illustrated, a systematic key being added for their identification. Considering the vertical nature of the hauls, it was not possible to specify the habitats of the different species; for this reason they are grouped as species from subtropical and subantartic areas of influence. The first group, made up of 17 species, shows and evident graduation in its latitudinal distribution, some of them being more restricted in their distribution than the others. The second group, of 4 species, is found south to the tropical convergence, in transitional waters, towards cold sectors. The third group, of 6 species, is found to be distributed all along the continental shelf, in subtropical and subantartic regions, and extending their distribution northwards, possibly related to deep water levels. The general scheme is coincident with the distribution of other planktonic groups (Copepods, Euphausiids). As a general feature, neither coastal nor shelf water specimens of pelagic Polychaeta were found, with exception of T. septentrionalis. A comparison with the results in Tebble's paper (1960) in the southwest Atlantic ocean is made, 12 of our species being coincidently found in the same hydrological area by that author. The drift of the main water masses of the South Atlantic ocean is accepted as a possible cause for the distribution of the pelagic Polychaeta of the southwest Atlantic regions.
Resumo:
On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)
Resumo:
This is an identification guide for cetaceans (whales, dolphins, and porpoises). It was designed to assist laypersons in identifying cetaceans encountered in the western North Atlantic Ocean and was intended for use by ongoing cetacean observer programs. This publication includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices cover tags used on cetacean species; how to record and report cetacean observations at see and for stranded cetaceans; and a list of contacts for reporting cetacean strandings. (Document pdf contains 183 pages - file takes considerable time to open)
Resumo:
(PDF has 6 pages.)
Resumo:
The migratory population of striped bass (Morone saxatilis) (>400 mm total length[TL]) spends winter in the Atlantic Ocean off the Virginia and North Carolina coasts of the United States. Information on trophic dynamics for these large adults during winter is limited. Feeding habits and prey were described from stomach contents of 1154 striped bass ranging from 373 to 1250 mm TL, collected from trawls during winters of 1994-96, 2000, and 2002-03, and from the recreational fishery during 2005-07. Nineteen prey species were present in the diet. Overall, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli) dominated the diet by boimass (67.9%) and numerically (68.6%). The percent biomass of Atlantic menhaden during 1994-2003 to 87.0% during 2005-07. Demersal fish species such as Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) represented <15% of the diet biomass, whereas alosines (Alosa spp.) were rarely observed. Invertebrates were least important, contributing <1.0% by biomass and numerically. Striped bass are capable of feeding on a wide range of prey sizes (2% to 43% of their total length). This study outlines the importance of clupeoid fishes to striped bass winter production and also shows that predation may be exerting pressure on one of their dominant prey, the Atlantic menhaden.
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
The family Priacanthidae contains four genera and four species that occur in the western central North Atlantic (Starnes, 1988). Pristigenys alta is distributed in the Caribbean, Gulf of Mexico and along the east coast of North America. Although juveniles have been reported from as far north as southern New England waters, adults are not reported north of Cape Hatteras, NC. Priacanthus arenatus is distributed in tropical and tropically influenced areas of the western central North Atlantic in insular and continental shelf waters. Adult P. arenatus are distributed north to North Carolina and Bermuda, juveniles have been collected as far north as Nova Scotia. Cookeolus japonicus and Heteropriacanthus cruentatus are circumglobally distributed species and are both common in insular habitats. In the western central North Atlantic, C. japonicus ranges from New Jersey to Argentina; H. cruentatus from New Jersey and northern Gulf of Mexico to southern Brazil (Starnes, 1988). (PDF contains 6 pages)
Resumo:
The family Gerreidae contains four genera and 13 species that occur in the western central North Atlantic. Adult gerreids are small to medium size fishes that are abundant in coastal waters, bays, and estuaries in tropical and warm temperate regions and sometimes occur in freshwaters. They are generally associate~ with grassy or open bottoms, but not with reefs. Gerreids are silvery fishes, with deeply forked tails, and extremely protrusible mouth that points downward when protracted. They apparently feed on bottom-dwelling organisms and at least one species (Eucinostomus gula) shows a distinct transition, during the juvenile period, from a planktivore (exclusively copepods) to a carnivore that includes a diet of almost solely polychaetes (Carr & Adams, 1973; Robins and Ray, 1987; Murdy et al., 1997). (PDF contains 10 pages)
Resumo:
An assessment of the status of the Atlantic stock of red drum is conducted using recreational and commercial data from 1986 through 1998. This assessment updates data and analyses from the 1989, 1991, 1992 and 1995 stock assessments on Atlantic coast red drum (Vaughan and Helser, 1990; Vaughan 1992; 1993; 1996). Since 1981, coastwide recreational catches ranged between 762,300 pounds in 1980 and 2,623,900 pounds in 1984, while commercial landings ranged between 60,900 pounds in 1997 and 422,500 pounds in 1984. In weight of fish caught, Atlantic red drum constitute predominantly a recreational fishery (ranging between 85 and 95% during the 1990s). Commercially, red drum continue to be harvested as part of mixed species fisheries. Using available length-frequency distributions and age-length keys, recreational and commercial catches are converted to catch in numbers at age. Separable and tuned virtual population analyses are conducted on the catch in numbers at age to obtain estimates of fishing mortality rates and population size (including recruitment to age 1). In tum, these estimates of fishing mortality rates combined with estimates of growth (length and weight), sex ratios, sexual maturity and fecundity are used to estimate yield per recruit, escapement to age 4, and static (or equilibrium) spawning potential ratio (static SPR, based on both female biomass and egg production). Three virtual analysis approaches (separable, spreadsheet, and FADAPT) were applied to catch matrices for two time periods (early: 1986-1991, and late: 1992-1998) and two regions (Northern: North Carolina and north, and Southern: South Carolina through east coast of Florida). Additional catch matrices were developed based on different treatments for the catch-and-release recreationally-caught red drum (B2-type). These approaches included assuming 0% mortality (BASEO) versus 10% mortality for B2 fish. For the 10% mortality on B2 fish, sizes were assumed the same as caught fish (BASEl), or positive difference in size distribution between the early period and the later period (DELTA), or intermediate (PROP). Hence, a total of 8 catch matrices were developed (2 regions, and 4 B2 assumptions for 1986-1998) to which the three VPA approaches were applied. The question of when offshore emigration or reduced availability begins (during or after age 3) continues to be a source of bias that tends to result in overestimates of fishing mortality. Additionally, the continued assumption (Vaughan and Helser, 1990; Vaughan 1992; 1993; 1996) of no fishing mortality on adults (ages 6 and older), causes a bias that results in underestimates of fishing mortality for adult ages (0 versus some positive value). Because of emigration and the effect of the slot limit for the later period, a range in relative exploitations of age 3 to age 2 red drum was considered. Tuning indices were developed from the MRFSS, and state indices for use in the spreadsheet and FADAPT VPAs. The SAFMC Red Drum Assessment Group (Appendix A) favored the FADAPT approach with catch matrix based on DELTA and a selectivity for age 3 relative to age 2 of 0.70 for the northern region and 0.87 for the southern region. In the northern region, estimates of static SPR increased from about 1.3% for the period 1987-1991 to approximately 18% (15% and 20%) for the period 1992-1998. For the southern region, estimates of static SPR increased from about 0.5% for the period 1988-1991 to approximately 15% for the period 1992-1998. Population models used in this assessment (specifically yield per recruit and static spawning potential ratio) are based on equilibrium assumptions: because no direct estimates are available as to the current status of the adult stock, model results imply potential longer term, equilibrium effects. Because current status of the adult stock is unknown, a specific rebuilding schedule cannot be determined. However, the duration of a rebuilding schedule should reflect, in part, a measure of the generation time of the fish species under consideration. For a long-lived, but relatively early spawning, species as red drum, mean generation time would be on the order of 15 to 20 years based on age-specific egg production. Maximum age is 50 to 60 years for the northern region, and about 40 years for the southern region. The ASMFC Red Drum Board's first phase recovery goal of increasing %SPR to at least 10% appears to have been met. (PDF contains 79 pages)
Resumo:
Assessments of the Atlantic red drum for the northern (North Carolina and north) and southern (South Carolina through east coast of Florida) regions along the U. S. Atlantic coast were recently completed. The joint Red Drum Technical Committee (SAFMC/ASMFC) selected the most appropriate catch matrix (incorporating an assumption on size of recreationally-released fish), selectivity of age 3 relative to age 2, and virtual population analysis (FADAPT). Given gear- and age-specific estimates of fishing mortality (F) for the 1992-1998 period, analyses were made of potential gains in escapement through age 4 and static spawning potential ratio (SPR) from further reductions in fishing mortality due to changes in slot and bag limits. Savings from bag limits were calculated given a particular slot size for the recreational fishery, with no savings for the commercial fisheries in the northern region due to their being managed primarily through a quota. Relative changes in catch-at-age estimates were used to adjust age-specific F and hence calculated escapement through age 4 and static SPR. Adjustment was made with the recreational savings to account for release mortality (10%, as in the stock assessment). Alternate runs for the northern region commercial fishery considered 25% release mortality for lengths outside the slot (instead of 0% for the base run), and 0% vs. 10% gain or loss across legal sizes in F. These results are summarized for ranges of bag limits with increasing minimum size limit (for fixed maximum size), and with decreasing maximum size limit (for fixed minimum size limit). For the southern region, a bag limit of one-fish per angler trip would be required to attain the stated target of 40% static SPR if the current slot limit were not changed. However, for the northern region, a bag limit of one-fish per angler trip appears to be insufficient to attain the stated target of 40% static SPR while maintaining the current slot limit. (PDF contains 41 pages)
Resumo:
Callionymidae, along with the Draconettidae and Gobiesocidae, previously were placed in the order Gobiesociformes (Allen, 1984). Recently, Nelson (1994) placed the Callionymidae and Draconettidae in the percifonn suborder Callionymoidei. The family is represented by three species in the western central North Atlantic Ocean, Diplogrammus pauciradiatus, Paradiplogrammus bairdi and Foetorepus agassizi (Davis, 1966; Robins and Ray, 1986). A detailed review ofthe family including early life history infonnation is given by Houde (1984) and Watson (1996). (PDF contains 11 pages)