8 resultados para Southern Australia
em Aquatic Commons
Resumo:
Fishery-independent estimates of spawning biomass (BSP) of the Pacific sardine (Sardinops sagax) on the south and lower west coasts of Western Australia (WA) were obtained periodically between 1991 and 1999 by using the daily egg production method (DEPM). Ichthyoplankton data collected during these surveys, specifically the presence or absence of S. sagax eggs, were used to investigate trends in the spawning area of S. sagax within each of four regions. The expectation was that trends in BSP and spawning area were positively related. With the DEPM model, estimates of BSP will change proportionally with spawning area if all other variables remain constant. The proportion of positive stations (PPS), i.e., stations with nonzero egg counts — an objective estimator of spawning area — was high for all south coast regions during the early 1990s (a period when the estimated BSP was also high) and then decreased after the mid-1990s. There was a decrease in PPS from the mid-1990s to 1999. The particularly low estimates in 1999 followed a severe epidemic mass mortality of S. sagax throughout their range across southern Australia. Deviations from the expected relationship between BSP and PPS were used to identify uncertainty around estimates of BSP. Because estimation of spawning area is subject to less sampling bias than estimation of BSP, the deviation in the relation between the two provides an objective basis for adjusting some estimates of the latter. Such an approach is particularly useful for fisheries management purposes when sampling problems are suspected to be present. The analysis of PPS undertaken from the same set of samples from which the DEPM estimate is derived will help provide information for stock assessments and for the management of purse-seine fisheries.
Resumo:
Larval development of the southern sea garfish (Hyporhamphus melanochir) and the river garfish (H. regularis) is described from specimens from South Australian waters. Larvae of H. melanochir and H. regularis have completed notochord flexion at hatching and are characterized by an elongate body with distinct rows of melanophores along the dorsal, lateral, and ventral surfaces; a small to moderate head; a heavily pigmented and long straight gut; a persistent pre-anal finfold; and an extended lower jaw. Fin formation occurs in the following sequence: caudal, dorsal and anal (almost simultaneously), pectoral, and pelvic. Despite the similarities between both species and among hemiramphid larvae in general, H. melanochir larvae are distinguishable from H. regularis by 1) having 58–61 vertebrae (vs. 51–54 for H. regularis); 2) having 12–15 melanophore pairs in longitudinal rows along the dorsal margin between the head and origin of the dorsal fin (vs. 19–22 for H. regularis); and 3) the absence of a large ventral pigment blotch anteriorly on the gut and isthmus (present in H. regularis). Both species can be distinguished from similar larvae of southern Australia (other hemiramphids and a scomberosocid) by differences in meristic counts and pigmentation.
Resumo:
The Mediterranean region is characterised by a variable climate with most of the rain falling during the winter and frequent summer droughts. Such warm, dry periods are ideal for the growth of large algal blooms that often consist of potentially toxic Cyanobacteria. This makes the management of water for human use particularly challenging in such a climate and it is important to understand how such blooms can be avoided or at least be reduced in size. PROTECH (Phytoplankton RespOnses To Environmental CHange) is a model that simulates the dynamics of different species of phytoplankton populations in lakes and reservoirs. Its distinct advantage over similar models is its ability to simulate the relative composition of the algal flora, allowing both quantitative and qualitative conclusions to be drawn e.g. whether Cyanobacteria could be a potential problem. PROTECH has been applied primarily to lakes and reservoirs in northern Europe. Recently, however, the model has been applied to water bodies in lower latitudes, including Australia to a water supply reservoir in the south of Spain, El Gergal. El Gergal is the last in a chain of reservoirs that supply water to the city of Seville. It was brought into service in April 1979 and has a maximum storage volume of 35 000 000 m3. This article summarises the application of PROTECH in order to simulate the following problems: • the effect of a large influx of Ceratium biomass into El Gergal from another reservoir • the effect of using alternative water sources instead of the Guadalquivir River (used occasionally to raise water levels in El Gergal) • the effect of installing tertiary sewage treatment on the Cala River • the effect of simulated drought conditions on phytoplankton in the reservoir.
Resumo:
The plant Crassula helmsii (Kirk) Cochayne, was likely to become widely distributed and to dominate many damp and wet areas of nature reserves, recreational waters and agricultural drainage of Britain. The aim of this report was to study Australian Swamp Stonecrop in its natural habitat where it is in balance with its environment. This contrasts with its rapid and widespread distribution in the U.K. where its growth interferes with the use of fisheries and amenity lakes but also reduces the value of nature reserves and sites of special scientific interest by suppressing native flora. It was proposed to observe its growth at a variety of sites over its natural distribution and to include some environmental factors, e.g. water-level, water-chemistry (nutrients, acidity and alkalinity), frost-tolerance, salinity, with the help of portable sensors, locally-available services or data. 8 weeks of travel in Australia allowed time to study the plant in its natural habitat including the coastal areas of the southern half of the continent i.e . Western Australia, South Australia, New South Wales, Victoria, Tasmania and southern Queensland. The overall objective was to determine the environmental range by visits to selected sites of Crassula helmsii over its geographic range.
Resumo:
We investigated the use of otolith morphology to indicate the stock structure of an exploited serranid coral reef fish, Plectropomus leopardus, on the Great Barrier Reef (GBR), Australia. Otoliths were measured by traditional one-and two-dimensional measures (otolith length, width, area, perimeter, circularity, and rectangularity), as well as by Fourier analysis to capture the finer details of otolith shape. Variables were compared among four regions of the GBR separated by hundreds of kilometers, as well as among three reefs within each region, hundreds of meters to tens of kilometers apart. The temporal stability in otolith structure was examined by comparing two cohorts of fully recruited four-year-old P. leopardus collected two years before and two years after a signif icant disturbance in the southern parts of the GBR caused by a large tropical cyclone in March 1997. Results indicated the presence of at least two stocks of P. leopardus, although the structure of each stock varied depending on the cohort considered. The results highlight the importance of incorporating data from several years in studies using otolith morphology to discriminate temporary and possibly misleading signals from those that indicate persistent spatial structure in stocks. We conclude that otolith morphology can be used as an initial step to direct further research on groups of P. leopardus that have lived at least a part of their life in different environments.
Resumo:
From 1947 to 1973, the U.S.S.R. conducted a huge campaign of illegal whaling worldwide. We review Soviet catches of humpback whales, Megaptera novaeangliae, in the Southern Ocean during this period, with an emphasis on the International Whaling Commission’s Antarctic Management Areas IV, V, and VI (the principal regions of illegal Soviet whaling on this species, south of Australia and western Oceania). Where possible, we summarize legal and illegal Soviet catches by year, Management Area, and factory fleet, and also include information on takes by other nations. Soviet humpback catches between 1947 and 1973 totaled 48,702 and break down as follows: 649 (Area I), 1,412 (Area II), 921 (Area III), 8,779 (Area IV), 22,569 (Area V), and 7,195 (Area VI), with 7,177 catches not currently assignable to area. In all, at least 72,542 humpback whales were killed by all operations (Soviet plus other nations) after World War II in Areas IV (27,201), V (38,146), and VI (7,195). More than one-third of these (25,474 whales, of which 25,192 came from Areas V and VI) were taken in just two seasons, 1959–60 and 1960–61. The impact of these takes, and of those from Area IV in the late 1950’s, is evident in the sometimes dramatic declines in catches at shore stations in Australia, New Zealand, and at Norfolk Island. When compared to recent estimates of abundance and initial population size, the large removals from Areas IV and V indicate that the populations in these regions remain well below pre-exploitation levels despite reported strong growth rates off eastern and western Australia. Populations in many areas of Oceania continue to be small, indicating that the catches from Area VI and eastern Area V had long-term impacts on recovery.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
Portunus pelagicus was collected at regular intervals from two marine embayments and two estuaries on the lower west coast of Australia and from a large embayment located approximately 800 km farther north. The samples were used to obtain data on the reproductive biology of this species in three very different environments. Unlike females, the males show a loosening of the attachment of the abdominal flap to the cephalothorax at a prepubertal rather than a pubertal molt. Males become gonadally mature (spermatophores and seminal fluid present in the medial region of the vas deferentia) at a very similar carapace width (CW) to that at which they achieve morphometric maturity, as reflected by a change in the relative size of the largest cheliped. Logistic curves, derived from the prevalence of mature male P. pelagicus, generally had wider confidence limits with morphometric than with gonadal data. This presumably reflects the fact that the morphometric (allometric) method of classifying a male P. pelagicus as mature employs probabilities and is thus indirect, whereas gonadal structure allows a mature male to be readily identified. However, the very close correspondence between the CW50’s derived for P. pelagicus by the two methods implies that either method can be used for management purposes. Portunus pelagicus attained maturity at a significantly greater size in the large embayment than in the four more southern bodies of water, where water temperatures were lower and the densities of crabs and fishing pressure were greater. As a result of the emigration of mature female P. pelagicus from estuaries, the CW50’s derived by using the prevalence of mature females in estuaries represent overestimates for those populations as a whole. Estimates of the number of egg batches produced in a spawning season ranged from one in small crabs to three in large crabs. These data, together with the batch fecundities of different size crabs, indicate that the estimated number of eggs produced by P. pelagicus during the spawning season ranges from about 78,000 in small crabs (CW=80 mm) to about 1,000,000 in large crabs (CW=180 mm).