6 resultados para Sounds of silent cinema
em Aquatic Commons
Resumo:
A series of studies was initiated to assess the condition of benthic macroinfauna and chemical contaminant levels in sediments and biota of the Gray’s Reef National Marine Sanctuary (GRNMS) and nearby shelf waters off the coast of Georgia. Four key objectives of the research are (1) to document existing environmental conditions within the sanctuary in order to provide a quantitative benchmark for tracking any future changes due to either natural or human disturbances; (2) to examine broader cross-shelf spatial patterns in benthic fauna and sediment contaminant concentrations and to identify potential controlling factors associated with the observed patterns; (3) to assess any between-year temporal variability in benthic fauna; and (4) to evaluate the importance of benthic fauna as prey for higher trophic levels. Such questions are being addressed to help fulfill long-term science and management goals of the GRNMS. However, it is anticipated that the information will be of additional value in broadening our understanding of the surrounding South Atlantic Bight (SAB) ecosystem and in bringing the knowledge to bear on related resourcemanagement issues of the region. We have begun to address the first three of these objectives with data from samples collected in spring 2000 at stations within GRNMS, and in spring 2001 at stations within the sanctuary and along three cross-shelf transects extending from the mouths of Sapelo, Doboy, and Altamaha Sounds out to sanctuary depths (about 17-20 m). This report provides a description of baseline conditions within the sanctuary, based on results of the spring 2000 survey (Section II), and uses data from both 2000 and 2001 to examine overall spatial and temporal patterns in biological and chemical variables within the sanctuary and surrounding inner-shelf environment (Section III). (PDF contains 65 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)
Resumo:
Spawning periodicities of white seabass (Atractoscion nobilis) were evaluated by observing spawning behavior, by collecting eggs, and monitoring recognizable sounds produced during the release of gametes. A total of 297 spawning events were documented from 15 male and 47 female white seabass contained within the seminatural confines of a 526-m3 net pen located in Catalina Harbor, Santa Catalina Island, California. Consistent spawning occurred from March through July 2001−03, and peaked in May at a photoperiod of 14 hours. Most spawning occurred within the 2-hour period following sunset or from 19:00−20:00 hours Pacific Standard Time. White seabass spawned at every phase of the lunar cycle; but an increase in successive spawning events followed the new moon. Most spawning occurred in water temperatures from 15 to 18°C, and there was no apparent correlation with tidal cycles. Seasonal and diel spawning periods were directly correlated with increases in the rate, intensity, and variety of white seabass sounds; this correlation may indicate that sounds function to enhance reproductive success. These findings can be extended to further develop seasonal fishery regulations and to better comprehend the role of sound in the reproduction of sound-producing fishes.
Resumo:
Four recognized species of menhaden, Brevoortia spp., occur in North American marine waters: Atlantic menhaden, B. tyrannus; Gulf menhaden, B. patronus; yellowfin menhaden. B. smithi; and finescale menhaden, B. gunteri. Three of the menhaden species are known to form two hybrid types. Members of the genus range from coastal waters of Veracruz, Mex., to Nova Scotia, Can. Atlantic and Gulf menhaden are extremely abundant within their respective ranges and support extensive purse-seine reduction (to fish meal and oil) fisheries. All menhaden species are estuarine dependent through late larval and juvenile stages. Depending on species and location within the range, spawning may occur within bays and sounds to a substantial distance offshore. Menhaden are considered to be filter-feeding, planktivorous omnivores as juveniles and adults. Menhaden eggs, immature developmental stages, and adults are potential prey for a large and diverse number of predators. North American menhadens, including two hybrids, are hosts for the parasitic isopod, Olencira praegustator, and the parasitic copepod, Lemaeenicus radiatus. Although the data are quite variable, a dome-shaped Ricker function is frequently used to describe the spawner-recruitment relationship for Atlantic and Gulf menhaden. Each of these species is treated as a single stock with respect to exploitation by the purse-seine reduction fishery. Estimates of instantaneous natural (other) mortality rates are O.45 for Atlantic menhaden and 1.1 for Gulf menhaden.
Resumo:
The fisheries resources of Lakes Albert and Kyoga present a high potential for economic growth, food, employment and foreign earnings. However, livelihoods appear to be compromised with the emergence and rapid spread of HIV/AIDS in the fisher communities of L. Albert and Kyoga. HIV/AIDS is considered a silent epidemic that is unique, posing a great challenge to the fisheries managers, health service providers, development planners and the resource users themselves. Fishers have high HIV prevalence, as well as AIDS-related illnesses and mortality rates. The high HIV prevalence rates among the fishing communities in Uganda is between 10-40% compared to the national rates which lie between 6% and 7%. This indicates that the national programmes have not adequately addressed the plight of the fishing communities of Lakes Albert, and Kyoga and the consequences have been devastating. Men and women living in fishing villages across the world have been found to be between five and ten times more vulnerable to the disease than other communities (Tarzan et al 2005, FAO, 2007). The present prevalence rates among the fishing communities stands at 10 to 40 % (LVFO, 2008). Meanwhile the same fishing communities are the essential labour for the Lakes’ fishery industry which is thriving nationally and internationally. That resource potentially can alleviate poverty and the HIV/AIDS threat. Fishing communities are the hidden victims of the disease, mixing patterns with the general population could act as a reservoir of infection that could spill over into the general population to drive the epidemic. On L. Albert, a quarter of the fisher folk were HIV-positive by 1992 compared to 4% in a nearby Agricultural village. Since then, there have been no targeted studies to address or monitor the prevalence rates eight years later, yet the multiplicity factor is high. HIV/AIDS can be linked to unsustainable fisheries, as the labour force available would not go to deep waters to fish, instead would fish in the shallow waters as a coping mechanism. A further effect is the loss to National and local economies and reduced nutritional security for the wider population. HIV/AIDS remains a significant challenge that has created a mosaic of complexity in the fishery sector. This needs to be addressed. It is, therefore, paramount that a comprehensive study was under taken to address this pandemic and the phenomenon of HIV/AIDS based on the study objectives. 1. To determine the trend in HIV/AIDS infection among fishing communities and the factors affecting it 2. To assess the impacts of HIV/AIDS on fish production and the implications for fisheries management.