2 resultados para Somaclonal and Androclonal variation

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important marine ecologic phenomenon, is the study of animal community among the bed or benthic fauna. Macrobenthoses are the great part of the benthic fauna that are more biomass than meiofauna and microfauna. To study polychaetes diversity of mangroves, located in Khoore-Khooran, sampling was conducted on a bimonthly and carried out from December 2001 to October 2002. Bottom samples were collected by Van Veen grab (0.025 m2) at 6 station from 2 transect in situ measurement of temperature, pH, DO and salinity were done. A total of polychaetes were identified within study 32 Family and 43 Genus. Cirriphormia and Nephtys were the most dominant genus in the studies. The range numerical abundance of polychaetes was between 3006 per m2 in the station A3 to 559 individual per m2 in the station A1 and the variation was done to different bottom, texture the variable environment conditions governing the different parts of each creeks as well as within creeks. Application of diversity indices (Shannon H') on the dominant polychaetes assemblages has higher H' in the Azar and lower H' in the Mehr and the stations B3 has the highest H' and the station A2 has the lowest H' Application of diversity and Richness, Evennes were studied and showed that the station A3 has the lowest evenness and the most individual, and station A I has the middle pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of how biota can be used to monitor ecosystem health and assess impacts by human alterations such as land use and management measures taken at different spatial scales is critical for improving the ecological quality of aquatic ecosystems. This knowledge in Uganda is very limited or unavailable yet it is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of aquatic ecosystems. In this study, benthic invertebrate community patterns were sampled between June 2001 and April 2002 and analysed in relation to water quality and catchment land use patterns from three shallow near-shore bays characterized by three major land uses patterns: urban (Murchison Bay); semi-urban (Fielding Bay); rural (Hannington Bay). Variations in density and guild composition of benthic macro-invertebrates communities were evaluated using GIS techniques along an urban-rural gradient of land use and differences in community composition were related to dissolved oxygen and conductivity variation. Based on numerical abundance and tolerance values, Hilsenhoff's Biotic Index ofthe invertebrates was determined in order to evaluate the relative importance of water quality in the three bays. Murchison Bay supported a relatively taxa-poor invertebrate assemblage mainly comprising stenotopic and eurytopic populations of pollution-tolerant groups such as worms and Chironomus sp. with an overall depression in species diversity. On the contrary, the communities in Fielding and Hannington bays were quite similar and supported distinct and diverse assemblages including pollution-intolerant forms such as Ephemeroptera (mayflies), Odonata (dragonflies). The Hilsenhoff Biotic Index in Murchison Bay was 6.53. (indicating poor water quality) compared to 6.34 for Fielding Bay and 5.78 for Hannington Bay (both indicating fair water quality). The characterization of maximum taxa richness balanced among taxa groups with good representation of intolerant individuals in Hannington Bay relative to Fielding and Murchison bays concludes that the bay is the cleanest in terms of water quality. Contrary, the dominance of few taxa with many tolerant iqdividuals present in Murchison Bay indicates that the bay is degraded in terms of water quality. These result are ofimportance when planning conservation and management measures, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g nutrient loading) affect water ecosystems. Therefore, analysis of water quality in relation to macro-invertebrate community composition patterns as bio-indicators can lead to further understanding of their responses to environmental manipulations and perturbations.