5 resultados para Solar water heaters
em Aquatic Commons
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
Although the mechanisms of climatic fluctuations are not completely understood, changes in global solar irradiance show a link with regional precipitation. A proposed mechanism for this linkage begins with absorption of varying amounts of solar energy by tropical oceans, which may aid in development of ocean temperature anomalies. These anomalies are then transported by major ocean currents to locations where the stored energy is released into the atmosphere, altering pressure and moisture patterns that can ultimately affect regional precipitation. Correlation coefficients between annual averages of monthly differences in empirically modeled solar-irradiance variations and annual state-divisional precipitation values in the United States for 1950 to 1988 were computed with lag times of 0 to 7 years. The highest correlations (R=0.65) occur in the Pacific Northwest with a lag time of 4 years, which is about equal to the travel time of water within the Pacific Gyre from the western tropical Pacific Ocean to the Gulf of Alaska. With positive correlations, droughts coincide with periods of negative irradiance differences (dry, high-pressure development), and wet periods coincide with periods of positive differences (moist, low-pressure development).
Resumo:
Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Pollen analysis and 5 radiocarbon dates for a 687-cm core provide a detailed chronology of environmental change for San Joaquin Marsh at the head of Newport Bay, Orange County, California. Sediment deposition kept pace with sea level rise during the mid-Holocene, but after 4500 years BP, sea water regularly reached the coring site, and salt marsh was the local vegetation. Brief periods of dominance by fresh-water vegetation 3800, 2800, 2300 and after 560 years BP correlate global cooling events and (except the 3800-year BP event) with carbon-14 production anomalies. The coincidence of climate change and carbon-14 anomalies support a causal connection with solar variability, but regardless of the causal mechanism(s) the delta-carbon-14 curves provide a chronology for global, high-frequency climatic change comparable to that of Milankovitch cyclicity for longer time scales.
Resumo:
Studies on the quality assessments of three traditional, rotary and solar tunnel dried SIS products were conducted. Organoleptic quality of traditional dried SIS products available in the markets was poor compared to those produced in rotary and solar tunnel dryer. Reconstitution of samples were in the range of 54.26% to 75.24%, 69.37% to 83.73% and 55.08% to 80.24% when soaked at 80°C for traditional, rotary and solar tunnel dried products, respectively. The percentage of reconstitution increased with the increase of soaking time and the uptake of water was maximum after 60 min of soaking. The moisture contents of traditional, rotary and solar tunnel dried products were in the range of 26.02% to 27.33%, 16.23% to 22.84% and 13.71% to 19.30%, respectively. The protein contents were in the range of 60.78% to 72.59%, 62.17% to 76.27% and 61.11% to 76.00%, respectively; lipid contents were in the range of 12.26% to 22.60%, 14.00% to 24.71% and 13.92% to 22.39%, respectively and ash contents in the range of 15.11% to 16.59%, 8.32% to 13.51% and 8.71% to 16.45%, respectively on dry matter basis. The TVB-N content of rotary and solar tunnel dried products was low compared to traditional one ranging from 10.64 to 17.52 mg/100g and 14.34 to 15.68 mg/100g, respectively whereas the TVB-N content of traditional samples was in the range of 15.46 to 20.36 mg/100g. The bacterial load of traditional, rotary and solar tunnel dried products were in the range of 1.43x10 super(8) CFU/g to 2.89 x10 super(80 CFU/g, 1.91x10 super(8) CFU/g to 2.84x10 super(8) CFU/g and 1.95x10 super(8) CFU/g to 2.59x10 super(8) CFU/g, respectively. The results of the study indicated that dried fish products from rotary dryer and solar tunnel dryer were found to be of better quality in nutritional and food quality aspects than those of traditional dried products.