8 resultados para Society of Friends New York Yearly Meeting.
em Aquatic Commons
Resumo:
The benthic macrofauna of the New York Bight has been monitored extensively, primarily to determine trends over space and time in biological effects of waste inputs. In the present study, from 44 to 48 stations were sampled each summer from 1980-1985. Data from other Bight benthic studies are included to· extend the temporal coverage from 1979 to 1989. Numbers of species and amphipods per sample, taken as relatively sensitive indicators of environmental stress, showed consistent spatial patterns. Lowest values were found in the Christiaensen Basin and other inshore areas, and numbers increased toward the outermost shelf and Hudson Shelf Valley stations. There were statistically significant decreases in species and amphipods at most stations from 1980 to 1985. (Preliminary data from a more recent study suggest numbers of species increased again between 1986 and 1989.) Cluster analysis of 1980-85 data indicated several distinct assemblages-sewage sludge dumpsite, sludge accumulation area, inner Shelf Valley, outer Shelf Valley, outer shelf-with little change over time. The "enriched" and "highly altered" assemblages in the Basin appear similar to those reported since sampling began there in 1968. No consistently defaunated areas have been found in any sampling programs over the past 20 years. On a gross level, therefore, recent faunal responses to any environmental changes are not evident, but the more sensitive measures used, i.e. numbers of species and amphipods, do indicate widespread recent effects. Causes of the faunal changes are not obvious; some possibilities, including increasing effects of sewage sludge or other waste inputs, natural factors, and sampling artifacts, are discussed. (PDF file contains 54 pages.)
Resumo:
This report provides a compilation of new maps and spatial assessments for seabirds, bathymetry, surficial sediments, deep sea corals, and oceanographic habitats in support of offshore spatial planning led by the New York Department of State Ocean and Great Lakes Program. These diverse ecological themes represent priority information gaps left by past assessments and were requested by New York to better understand and balance ocean uses and environmental conservation in the Atlantic. The main goal of this report is to translate raw ecological, geomorphological and oceanographic data into maps and assessments that can be easily used and understood by coastal managers involved in offshore spatial planning. New York plans to integrate information in this report with other ecological, geophysical and human use data to obtain a broad perspective on the ocean environment, human uses and their interactions. New York will then use this information in an ecosystem-based framework to coordinate and support decisions balancing competing demands in their offshore environment, and ultimately develop a series of amendments to New York’s federally approved Coastal Management Program. The targeted users of this report and the compiled spatial information are New York coastal managers, but other State and federal decision-makers, offshore renewable energy development interests and environmental advocates will also find the information useful. In addition, the data and approaches will be useful to regional spatial planning initiatives set up by the Mid-Atlantic Regional Council on the Ocean (MARCO) and federal regional planning bodies for coastal and marine spatial planning.
Resumo:
The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)
Resumo:
Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton. Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.)
Resumo:
Raritan Bay is the body of water bounded by New York and New Jersey and lying immediately south of New York City (Fig. 1). It has close proximity to the most concentrated urban and industrial area in the United States. Its history has been one of extensive multiple use by the surrounding human population. Dating from the precolonial and colonial periods, people have employed many types of gear to catch and gather its once abundant fishes and shellfishes. Its beaches were once popular for sun bathing and swimming, but after the 1940's they were essentially abandoned because the water became too polluted. Another large use has been for pleasure boating and the transit and dockage of merchant, passenger, and military vessels. Channels and basins were dug in the bay, bulkheads and jetties were constructed along its shores, and it was a donor source of sand and gravel for construction projects. It has also been a receptor for large quantities of domestic and industrial wastes and, mainly for this reason, it is one ofthe most deteriorated estuaries in the United States.
Resumo:
Young-of-year (YOY) blue-fish (Pomatomus saltatrix) along the U.S. east coast are often assumed to use estuaries almost exclusively during the summer. Here we present data from 1995 to 1998 indicating that YOY (30–260 mm FL) also use ocean habitats along the coast of New Jersey. An analysis of historical and recent data on northern and southern ocean beaches (0.1–2 m) and the inner continental shelf (5–27 m) during extensive sampling in New Jersey waters from 1995 to 1998 indicated that multiple cohorts occurred (June–August) in every year. When comparable collections of YOY were made in the ocean and in an adjacent estuary, the abundance was 1–2 orders of magnitude greater on ocean beaches during the summer. The YOY were even more abundant in ocean habitats in the fall (September–October), presumably as a result of YOY leaving estuaries to join the coastal migration south. During 1999 and 2000, YOY bluefish were tagged with internal sequential coded wire microtags in order to refine our under-standing of habitat use and movement. Few (0.04%) of the fish tagged on ocean beaches were recaptured; however, 2.2% of the fish tagged in the estuary were recaptured from 2 to 27 days after tagging. Recaptured fish grew quickly (average 1.37 mm FL/d). On ocean beaches YOY fed on a variety of invertebrates and fishes but their diet changed with size. By approximately 80–100 mm FL, they were piscivorous and fed primarily on engraulids, a pattern similar to that reported in estuaries. Based on distribution, abundance, and feeding, both spring- and summer-spawned cohorts of YOY bluefish commonly use ocean habitats. Therefore, attempts to determine factors affecting recruitment success based solely on estuarine sampling may be inadequate and further examination, especially of the contribution of the summer-spawned cohort in ocean habitats, appears warranted.