3 resultados para Smallest space analysis
em Aquatic Commons
Resumo:
ENGLISH: We analyzed catches per unit of effort (CPUE) from the Japanese longline fishery for bigeye tuna (Thunnus obesus) in the central and eastern Pacific Ocean (EPO) with regression tree methods. Regression trees have not previously been used to estimate time series of abundance indices fronl CPUE data. The "optimally sized" tree had 139 parameters; year, month, latitude, and longitude interacted to affect bigeye CPUE. The trend in tree-based abundance indices for the EPO was similar to trends estimated from a generalized linear model and fronl an empirical model that combines oceanographic data with information on the distribution of fish relative to environmental conditions. The regression tree was more parsimonious and would be easier to implement than the other two nl0dels, but the tree provided no information about the nlechanisms that caused bigeye CPUEs to vary in time and space. Bigeye CPUEs increased sharply during the mid-1980's and were more variable at the northern and southern edges of the fishing grounds. Both of these results can be explained by changes in actual abundance and changes in catchability. Results from a regression tree that was fitted to a subset of the data indicated that, in the EPO, bigeye are about equally catchable with regular and deep longlines. This is not consistent with observations that bigeye are more abundant at depth and indicates that classification by gear type (regular or deep longline) may not provide a good measure of capture depth. Asimulated annealing algorithm was used to summarize the tree-based results by partitioning the fishing grounds into regions where trends in bigeye CPUE were similar. Simulated annealing can be useful for designing spatial strata in future sampling programs. SPANISH: Analizamos la captura por unidad de esfuerzo (CPUE) de la pesquería palangrera japonesa de atún patudo (Thunnus obesus) en el Océano Pacifico oriental (OPO) y central con métodos de árbol de regresión. Hasta ahora no se han usado árboles de regresión para estimar series de tiempo de índices de abundancia a partir de datos de CPUE. EI árbol de "tamaño optimo" tuvo 139 parámetros; ano, mes, latitud, y longitud interactuaron para afectar la CPUE de patudo. La tendencia en los índices de abundancia basados en árboles para el OPO fue similar a las tendencias estimadas con un modelo lineal generalizado y con un modelo empírico que combina datos oceanográficos con información sobre la distribución de los peces en relación con las condiciones ambientales. EI árbol de regresión fue mas parsimonioso y seria mas fácil de utilizar que los dos otros modelos, pero no proporciono información sobre los mecanismos que causaron que las CPUE de patudo valiaran en el tiempo y en el espacio. Las CPUE de patudo aumentaron notablemente a mediados de los anos 80 y fueron mas variables en los extremos norte y sur de la zona de pesca. Estos dos resultados pueden ser explicados por cambios en la abundancia real y cambios en la capturabilidad. Los resultados de un arbal de regresión ajustado a un subconjunto de los datos indican que, en el OPO, el patudo es igualmente capturable con palangres regulares y profundos. Esto no es consistente con observaciones de que el patudo abunda mas a profundidad e indica que clasificación por tipo de arte (palangre regular 0 profundo) podría no ser una buena medida de la profundidad de captura. Se uso un algoritmo de templado simulado para resumir los resultados basados en el árbol clasificando las zonas de pesca en zonas con tendencias similares en la CPUE de patudo. El templado simulado podría ser útil para diseñar estratos espaciales en programas futuros de muestreo. (PDF contains 45 pages.)
Resumo:
A general model for yield-per-recruit analysis of rotational (periodic) fisheries is developed and applied to the sea scallop (Placopecten magellanicus) fishery of the northwest Atlantic. Rotational fishing slightly increases both yield- and biomass-per-recruit for sea scallops at FMAX. These quantities decline less quickly when fishing mortality is increased beyond FMAX than when fishing is at a constant rate. The improvement in biomass-per-recruit appears to be nearly independent of the selectivity pattern but increased size-at-entry can reduce or eliminate the yield-per-recruit advantage of rotation. Area closures and rotational fishing can cause difficulties with the use of standard spatially averaged fishing mortality metrics and reference points. The concept of temporally averaged fishing mortality is introduced as one that is more appropriate for sedentary resources when fishing mortality varies in time and space.
Resumo:
Tag release and recapture data of bigeye (Thunnus obesus) and yellowfin tuna (T. albacares) from the Hawaii Tuna Tagging Project (HTTP) were analyzed with a bulk transfer model incorporating size-specific attrition to infer population dynamics and transfer rates between various fishery components. For both species, the transfer rate estimates from the offshore handline fishery areas to the longline fishery area were higher than the estimates of transfer from those same areas into the inshore fishery areas. Natural and fishing mortality rates were estimated over three size classes: yellowfin 20–45, 46–55, and ≥56 cm and bigeye 29–55, 56–70, and ≥71 cm. For both species, the estimates of natural mortality were highest in the smallest size class. For bigeye tuna, the estimates decreased with increasing size and for yellowfin tuna there was a slight increase in the largest size class. In the Cross Seamount fishery, the fishing mortality rate of bigeye tuna was similar for all three size classes and represented roughly 12% of the gross attrition rate (includes fishing and natural mortality and emigration rates). For yellowfin tuna, fishing mortality ranged between 7% and 30%, the highest being in the medium size class. For both species, the overall attrition rate from the entire fishery area was nearly the same. However, in the specific case of the Cross Seamount fishery, the attrition rate for yellowfin tuna was roughly twice that for bigeye. This result indicates that bigeye tuna are more resident at the Seamount than yellowfin tuna, and larger bigeye tunas tend to reside longer than smaller individuals. This may result in larger fish being more vulnerable to capture in the Seamount fishery. The relatively low level of exchange between the Sea-mount and the inshore and longline fisheries suggests that the fishing activity at the Seamount need not be of great management concern for either species. However, given that the current exploitation rates are considered moderate (10–30%), and that Seamount aggregations of yellowfin and bigeye tuna are highly vulnerable to low-cost gear types, it is recommended that further increases in fishing effort for these species be monitored at Cross Seamount.