2 resultados para Short stories, Australian

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding recolonization processes of intertidal fish assemblages is integral for predicting the consequences of significant natural or anthropogenic impacts on the intertidal zone. Recolonization of experimentally defaunated intertidal rockpools by fishes at Bass Point, New South Wales (NSW), Australia, was assessed quantitatively by using one long-term and two short-term studies. Rockpools of similar size and position at four sites within the intertidal zone were repeatedly defaunated of their fish fauna after one week, one month, and three months during two shortterm studies in spring and autumn (5 months each), and every six months for the long-term study (12 months). Fish assemblages were highly resilient to experimental perturbations—recolonizing to initial fish assemblage structure within 1−3 months. This recolonization was primarily due to subadults (30−40 mm TL) and adults (>40 mm TL) moving in from adjacent rockpools and presumably to abundant species competing for access to vacant habitat. The main recolonizers were those species found in highest numbers in initial samples, such as Bathygobius cocosensis, Enneapterygius rufopileus, and Girella elevata. Defaunation did not affect the size composition of fishes, except during autumn and winter when juveniles (<30 mm TL) recruited to rockpools. It appears that Bass Point rockpool fish assemblages are largely controlled by postrecruitment density-dependent mechanisms that indicate that recolonization may be driven by deterministic mechanisms.