4 resultados para Shear impedance

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear (as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated measures of bioelectrical impedance analysis (BIA) and Fulton’s condition factor (K) as potential nonlethal indices for detecting short-term changes in nutritional condition of postsmolt Atlantic salmon (Salmo salar). Fish reared in the laboratory for 27 days were fed, fasted, or fasted and then refed. Growth rates and proximate body composition (protein, fat, water) were measured in each fish to evaluate nutritional status and condition. Growth rates of fish responded rapidly to the absence or reintroduction of food, whereas body composition (% wet weight) remained relatively stable owing to isometric growth in fed fish and little loss of body constituents in fasted fish, resulting in nonsignificant differences in body composition among feeding treatments. The utility of BIA and Fulton’s K as condition indices requires differences in body composition. In our study, BIA measures were not significantly different among the three feeding treatments, and only on the final day of sampling was K of fasted vs. fed fish significantly different. BIA measures were correlated with body composition content; however, wet weight was a better predictor of body composition on both a content and concentration (% wet weight) basis. Because fish were growing isometrically, neither BIA nor K was well correlated with growth rate. For immature fish, where growth rate, rather than energy reserves, is a more important indicator of fish condition, a nonlethal index that reflects shortterm changes in growth rate or the potential for growth would be more suitable as a condition index than either BIA measures or Fulton�

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New technologies can be riddled with unforeseen sources of error, jeopardizing the validity and application of their advancement. Bioelectrical impedance analysis (BIA) is a new technology in fisheries research that is capable of estimating proximate composition, condition, and energy content in fish quickly, cheaply, and (after calibration) without the need to sacrifice fish. Before BIA can be widely accepted in fisheries science, it is necessary to identify sources of error and determine a means to minimize potential errors with this analysis. We conducted controlled laboratory experiments to identify sources of errors within BIA measurements. We concluded that electrode needle location, procedure deviations, user experience, time after death, and temperature can affect resistance and reactance measurements. Sensitivity analyses showed that errors in predictive estimates of composition can be large (>50%) when these errors are experienced. Adherence to a strict protocol can help avoid these sources of error and provide BIA estimates that are both accurate and precise in a field or laboratory setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesize that the impact of PCB desorption from resuspended sediments depends upon the intensity of the resuspension (which scales to bottom stress in the absence of organisms), the rate at which each congener desorbs (which depends on the size and hydrophobicity of the chemical, the relative amount of 'labile' and 'resistant' forms, and the size distribution of the suspended particles), and the residence time of the particles in the water column (which depends on the time-variable water column turbulence regime and the particle settling velocities). In order to accurately quantify the impact of PCB desorption from Hudson River sediments, we are conducting experiments that realistically mimic bottom shear stress and water column turbulence and rapidly measure PCB congener release. The objectives of this study are to measure the kinetics of PCB congener desorption from Hudson River sediments under realistic bottom shear and water column turbulence conditions and to quantify the impact of shear stress and contaminant aging on PCB desorption kinetics.