4 resultados para Server
em Aquatic Commons
Resumo:
(Document pdf contains 193 pages) Executive Summary (pdf, < 0.1 Mb) 1. Introduction (pdf, 0.2 Mb) 1.1 Data sharing, international boundaries and large marine ecosystems 2. Objectives (pdf, 0.3 Mb) 3. Background (pdf, < 0.1 Mb) 3.1 North Pacific Ecosystem Metadatabase 3.2 First federation effort: NPEM and the Korea Oceanographic Data Center 3.2 Continuing effort: Adding Japan’s Marine Information Research Center 4. Metadata Standards (pdf, < 0.1 Mb) 4.1 Directory Interchange Format 4.2 Ecological Metadata Language 4.3 Dublin Core 4.3.1. Elements of DC 4.4 Federal Geographic Data Committee 4.5 The ISO 19115 Metadata Standard 4.6 Metadata stylesheets 4.7 Crosswalks 4.8 Tools for creating metadata 5. Communication Protocols (pdf, < 0.1 Mb) 5.1 Z39.50 5.1.1. What does Z39.50 do? 5.1.2. Isite 6. Clearinghouses (pdf, < 0.1 Mb) 7. Methodology (pdf, 0.2 Mb) 7.1 FGDC metadata 7.1.1. Main sections 7.1.2. Supporting sections 7.1.3. Metadata validation 7.2 Getting a copy of Isite 7.3 NSDI Clearinghouse 8. Server Configuration and Technical Issues (pdf, 0.4 Mb) 8.1 Hardware recommendations 8.2 Operating system – Red Hat Linux Fedora 8.3 Web services – Apache HTTP Server version 2.2.3 8.4 Create and validate FGDC-compliant Metadata in XML format 8.5 Obtaining, installing and configuring Isite for UNIX/Linux 8.5.1. Download the appropriate Isite software 8.5.2. Untar the file 8.5.3. Name your database 8.5.4. The zserver.ini file 8.5.5. The sapi.ini file 8.5.6. Indexing metadata 8.5.7. Start the Clearinghouse Server process 8.5.8. Testing the zserver installation 8.6 Registering with NSDI Clearinghouse 8.7 Security issues 9. Search Tutorial and Examples (pdf, 1 Mb) 9.1 Legacy NSDI Clearinghouse search interface 9.2 New GeoNetwork search interface 10. Challenges (pdf, < 0.1 Mb) 11. Emerging Standards (pdf, < 0.1 Mb) 12. Future Activity (pdf, < 0.1 Mb) 13. Acknowledgments (pdf, < 0.1 Mb) 14. References (pdf, < 0.1 Mb) 15. Acronyms (pdf, < 0.1 Mb) 16. Appendices 16.1. KODC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.1.1. Seattle meeting agenda, August 22–23, 2005 16.1.2. Seattle meeting minutes, August 22–23, 2005 16.1.3. Busan meeting agenda, October 10–11, 2005 16.1.4. Busan meeting minutes, October 10–11, 2005 16.2. MIRC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.2.1. Seattle Meeting agenda, August 14-15, 2006 16.2.2. Seattle meeting minutes, August 14–15, 2006 16.2.3. Tokyo meeting agenda, October 19–20, 2006 16.2.4. Tokyo, meeting minutes, October 19–20, 2006 16.3. XML stylesheet conversion crosswalks (pdf, < 0.1 Mb) 16.3.1. FGDCI to DIF stylesheet converter 16.3.2. DIF to FGDCI stylesheet converter 16.3.3. String-modified stylesheet 16.4. FGDC Metadata Standard (pdf, 0.1 Mb) 16.4.1. Overall structure 16.4.2. Section 1: Identification information 16.4.3. Section 2: Data quality information 16.4.4. Section 3: Spatial data organization information 16.4.5. Section 4: Spatial reference information 16.4.6. Section 5: Entity and attribute information 16.4.7. Section 6: Distribution information 16.4.8. Section 7: Metadata reference information 16.4.9. Sections 8, 9 and 10: Citation information, time period information, and contact information 16.5. Images of the Isite server directory structure and the files contained in each subdirectory after Isite installation (pdf, 0.2 Mb) 16.6 Listing of NPEM’s Isite configuration files (pdf, < 0.1 Mb) 16.6.1. zserver.ini 16.6.2. sapi.ini 16.7 Java program to extract records from the NPEM metadatabase and write one XML file for each record (pdf, < 0.1 Mb) 16.8 Java program to execute the metadata extraction program (pdf, < 0.1 Mb) A1 Addendum 1: Instructions for Isite for Windows (pdf, 0.6 Mb) A2 Addendum 2: Instructions for Isite for Windows ADHOST (pdf, 0.3 Mb)
Resumo:
For 10 years the Institute for Fishing Technology, Hamburg (IFH) has been carrying out experiments in the brown shrimp fishery with beam trawls aiming at a reduction of unwanted bycatches. When the tests were transferred to commercial fishery conditions the personnel effort and costs increased markedly. It became e.g. necessary to install a deep-freeze chain to make it possible to evaluate more samples in the laboratory. This again required to increase the number of technicians for measuring the fish and shrimp samples, but also made it necessary to perform this work in the most rational and time-saving way by applying modern electronic aids. Though all samples still have to be sorted by species and have to be weighed and measured the introduction of electronic aids, however, like electronic measuring board and computer-aided image processing system, all weight and length data are immediately and digitally recorded after processing. They are transferred via a network to a server PC which stores them into a purpose-designed database. This article describes the applicationof two electronic systems: the measuring board (FM 100, Fa. SCANTROL), iniated by a project in the Norwegian Institute for Fishing Technology, and a computer-aided image processing system, focussing on measuring shrimps in their naturally flexed shape, also developed in the Institute for Fishing Technology in close collaboration with the University of Duisburg. These electronic recording systems allow the consistent and reproducible record of data independent of the changing day-to-day personal form of the staff operating them. With the help of these systems the number of measurements the laboratory could be maximized to 250 000 per year. This made it possible to evaluate, in 1999, 525 catch samples from 75 commercial hauls taken during 15 days at sea. The time gain in measuring the samples is about one third of the time previously needed (i.e. one hour per sample). An additional advantage is the immediate availability of the digitally stored data which enables rapid analyses of all finished subexperiments. Both systems are applied today in several institutes of the Federal Research Centre. The image processing system is now the standard measuring method in an international research project.
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).
Resumo:
Iron is required for many microbes and pathogens for their survival and proliferation including Leishmania which cause leishmaniasis. Leishmaniasis is an increasingly serious infectious disease with a wide spectrum of clinical manifestations. These range from localized cutaneous leishmaniasis (CL) lesions to a lethal visceral form. Certain strains such as BALB/c mice fail to control L. major infection and develop progressive lesions and systemic disease. These mice are thought to be a model of non-healing forms of the human disease such as kala-azar or diffuse cutaneous leishmaniasis. Progression of disease in BALB/c mice has been associated with the anemia, in last days of their survival, the progressive anemia is considered to be one of the reasons of their death. Ferroportin (Fpn), a key regulator of iron homeostasis is a conserved membrane protein that exports iron across the duodenal enterocytes as well as macrophages and hepatocytes into the blood circulation. Fpn has also critical influence on survival and proliferation of many microorganisms whose growth is dependent upon iron, thus preparation of Fpn is needed to study the role of iron in immune responses and pathogenesis of micoorganisms. To prepare and characterize a recombinant ferroportin, total RNA was extracted from Indian zebrafish duodenum, and used to synthesize cDNA by RT-PCR. PCR product was first cloned in Topo TA vector and then subcloned into the GFP expression vector pEGFP–N1. The final resulted plasmid (pEGFP-ZFpn) was used for expression of FPN-EGFP protein in Hek 293T cells. The expression was confirmed by fluorescence microscopy and flow cytometery. Recombinant Fpn was further characterized by submission of its predicted amino acid sequences to the TMHMM V2.0 prediction server (hidden Markov model), NetOGlyc 3.1 server and NetNGlyc 3.1 server. Data emphasised that obtained Fpn from indian zebrafish contained eight transmembrane domains with N- and C-termini inside the cytoplasm and harboured 78 mucin-type glycosylated amino acid. The results indicate that the prepared and characterized recombinant Fpn protein has no membrane topology difference compared to other Fpn described by other researcher. Our next aim was to deliver recombinant plasmid (pEGFP-ZFpn) to entrocyte cells. However, naked therapeutic genes are rapidly degraded by nucleases, showing poor cellular uptake, nonspecificity to the target cells, and low transfection efficiency. The development of safe and efficient gene carriers is one of the prerequisites for the success of gene therapy. Chitosan and alginate 139 polymers were used for oral gene carrier because of their biodegradability, biocompatibility and their mucoadhesive and permeability-enhancing properties in the gut. Nanoparticles comprising Alginate/Chitosan polymers were prepared by pregel preparation method. The resulting nanoparticles had a loading efficiency of 95% and average size of 188 nm as confirmed by PCS method and SEM images had showed spherical particles. BALB/c mice were divided to three groups. The first and second group were fed with chitosan/alginate nanoparticles containing the pEGFP-ZFpn and pEGFP plasmid, respectively (30 μgr/mice) and the third group (control) didn’t get any nanoparticles. The result showed BALB/c mice infected by L.major, resulted in higher hematocryte and iron level in pEGFP-ZFpn fed mice than that in other groups. Consentration of cytokines determined by ELISA showed lower levels of IL-4 and IL-10 and higher levels of IFN-γ/IL-4 and IFN-γ/IL-10 ratios in pEGFP-ZFpn fed mice than that in other groups. Morover more limited increase of footpad thickness and significant reduction of viable parasites in lymph node was seen in pEGFP-ZFpn fed mice. The results showed the first group exhibited a highr hematocryte and iron compared to the other groups. These data strongly suggests the in vivo administration of chitosan/alginate nanoparticles containing pEGFP-ZFpn suppress Th2 response and may be used to control the leishmaniasis .