34 resultados para Semântic overlap

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological characteristics and overlap of fish community in Vamanapuram River have been studied in detail. In the 12 study sites, 19 fish species were encountered. Based on the body shape, four different types are apparent. The elongate bodied fishes (RBD<1.5) like Hemiramphus xanthopterus and Xenentodon cancila are grouped under one category. The deep bodied fishes (RBD>3.5) like Puntius filamentosus, P. ticto, P. vittatus, P. melanampyx, P. sarana, Etroplus maculatus and E. suratensis come under a separate category. Fishes with round to square cross section like Garra mullya and Glossogobius giuris form a separate group. All the other species are grouped as generalized bodied fishes. The morphological overlap studied for the Vamanapuram fish community showed that out of 190 combinations, 30 combinations have high overlaps (≥ 67). P. melanampyx has maximum number (6) of high overlaps. Puntius spp., which constituted 49.5% of the total population, have a mean morphological overlap of 52%. The morphological overlap of fish species in relation to the trophic structure is discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonality and overlap of diet of Chrysichthys species in Kainji Lake was studied for a period of one year. A total of two hundred and forty five Chrysichthys nigrodigitatus and one hundred and nineteen Chrysichthys auratus longifilis were used during the study. Chrysichthys species food items ranged from plant to animal materials. Seasonal variations of diet showed that plant material dominated the diet of both species in rainy and dry seasons. While zygoptera and Lumbiculus were absent in the diet of Chrysichthys auratus longifilis in rainy season, zygoptera and nematode were absent in dry season. There was significant correlation (p< 0.01) of the items between the two species. There was also high level of association between their diets, which indicated that both species have similar diet. Lake Kainji is a good environment for the survival of Chrysichthys species. KEYWORDS: Chrysichthys species, overlap, diet, seasonality, Kainji Lake, Nigeria

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two biotypes of hydrilla [Hydrilla verticillata(L.f.) Royle] occur in the United States, a dioecious type centered in the southeast and a monoecious type in the central Atlantic and northeastern states. Ecosystem managers need tools to distinguish the types as the ranges of each type expand and begin to overlap. A molecular tool using the randomly amplified polymorphic DNA (RAPD) procedure is available but its use is limited by a need for reference samples. We describe an alternative molecular tool which uses “universal primers” to sequence the trnL intron and trnL-F intergenic spacer of the chloroplast genome. This sequence yields three differences between the biotypes (two gaps and one single nucleotide polymorphism). A primer has been designed which ends in a gap that shows up only in the dioecious plant. A polymerase chain reaction (PCR) using this primer produces a product for the monoecious but not the dioecious plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In consecutive greenhouse studies, growth and propagule formation were examined first in monoecious hydrilla [Hydrilla verticillata (L.f.) Royle], then in dioecious hydrilla, at three temperature levels (25, 30, and 35 C) and contrasted over three periods of growth (8, 12 and 16 wks). Each biotype was grown under natural photoperiods, decreasing from 14 hrs (in Oct, Nov, and Dec). For both biotypes, total biomass and root-to-shoot ratios were significantly reduced at 35 C; greater biomass was produced both at 25 and 30C. Increases in growth period generally enhanced total biomass and shoot production; however, shoot length was unresponsive to growth periods beyond 8 wks. The 35C treatment strongly impeded tuber formation and eliminat4ed the production of axillary turions; the number and biomass of these propagules peaked at lower temperatures under short photoperiods after 12 to 16 wks. Shoot elongation was stimulated with increases in temperature and was especially pronounced in the dioecious biotype. Notably, in the monoecious biotype, the number of shoots as a potential source of fragments, and tuber production (although reduced) occurred at relatively high levels under unfavorably hihg-temperature (35C) conditions. These results suggest that monoecious hydrilla may be better adapted to high temperatures than previously shown, and that the distribution of both biotypes in the U.S. could overlap further in southern states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The small-spotted catshark (Scyliorhinus canicula) (Linnaeus, 1758) and the longnose spurdog (Squalus blainville) (Risso, 1826) are two species occurring in the European and western African continental shelves with a wide geographical distribution. In this study, the diet of S. blainville and S. canicula off the Portuguese western Atlantic coast was investigated in 2006 by collecting monthly samples of these two species from local fishing vessels. In the stomachs of both species, crustaceans and teleosts were the dominant prey items, and molluscs, polychaetes, echinoderms, and sipunculids were found in lower abundance. In S. canicula, urochordate and chondrichthyan species were also observed in stomachs and were classified as accidental prey items. Scyliorhinus canicula consumed a broader group of prey items than did S. blainville. A significant diet overlap was observed, despite both species occupying different depth ranges over the continental shelf. Scyliorhinus canicula exhibited a consistency in diet composition among seasons, sexes, and maturity stages. Nonetheless, for both adults and juveniles, an increase in relative abundance of teleosts in the diet was observed in the spring and summer. This study provides evidence of the importance of S. canicula and S. blainville as benthic and pelagic predators along the western Atlantic coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercial fisheries that are managed with minimum size limits protect small fish of all ages and may affect size-selective mortality by the differential removal of fast growing fish. This differential removal may decrease the average size at age, maturation, or sexual transition of the exploited population. When fishery-independent data are not available, a comparison of life history parameters of landed with those of discarded fish (by regulation) will indicate if differential mortality is occurring with the capture of young but large fish (fast growing phenotypes). Indications of this differential size-selective mortality would include the following: the discarded portion of the target fish would have similar age ranges but smaller sizes at age, maturation, and sexual transition as that of landed fish. We examined three species with minimum size limits but different exploitation histories. The known heavily exploited species (Rhomboplites aurorubens [vermilion snapper] and Pagrus pagrus [red porgy]) show signs of this differential mortality. Their landed catch includes many young, large fish, whereas discarded fish had a similar age range and mean ages but smaller sizes at age than the landed fish. The unknown exploited species, Mycteroperca phenax (scamp), showed no signs of differential mortality due to size-selective fishing. Landed catch consisted of old, large fish and discarded scamp had little overlap in age ranges, had significantly different mean ages, and only small differences in size at age when compared to comparable data for landed fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surveys were conducted to evaluate and compare assemblage structure and trophodynamics of ichthyoplankton, and their variability, in an estuarine transition zone. Environmental gradients in the saltfront region of the Patuxent River subestuary, Chesapeake Bay, were hypothesized to define spatiotemporal distributions and assemblages of ichthyoplankton. Larval fishes, zooplankton, and hydrographic data were collected during spring through early summer 2000 and 2001. Larvae of 28 fish species were collected and species richness was similar each year. Total larval abundance was highest in the oligohaline region down-estuary of the salt front in 2000, but highest at the salt front in 2001. Larvae of anadromous fishes were most abundant at or up-estuary of the salt front in both years. Two ichthyoplankton assemblages were distinguished: 1) riverine—characterized predominantly by anadromous species (Moronidae and Alosinae); and 2) estuarine—characterized predominantly by naked goby (Gobiosoma bosc) (Gobiidae). Temperature, dissolved oxygen, salinity-associated variables (e.g., salt-front location), and concentrations of larval prey, specifically the calanoid copepod Eurytemora affinis and the cladoceran Bosmina longirostris, were important indicators of larval fish abundance. In the tidal freshwater region up-estuary of the salt front, there was substantial diet overlap between congeneric striped bass (Morone saxatilis) and white perch (M. americana) larvae, and also larvae of alewife (Alosa pseudoharengus) (overlap= 0.71–0.93). Larval abundance, taxonomic diversity, and dietary overlap were highest within and up-estuary of the salt front, which serves to both structure the ichthyoplankton community and control trophic relationships in the estuarine transition zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using data collected simultaneously from a trawl and a hydrophone, we found that temporal and spatial trends in densities of juvenile Atlantic croaker (Micropogonias undulatus) in the Neuse River estuary in North Carolina can be identified by monitoring their sound production. Multivariate analysis of covariance (MA NCOVA) revealed that catch per unit of effort (CPUE) of Atlantic croaker had a significant relationship with the dependent variables of sound level and peak frequency of Atlantic croaker calls. Tests of between-subject correspondence failed to detect relationships between CPUE and either of the call parameters, but statistical power was low. Williamson’s index of spatial overlap indicated that call detection rate (expressed by a 0–3 calling index) was correlated in time and space with Atlantic croaker CPUE. The correspondence between acoustic parameters and trawl catch rates varied by month and by habitat. In general, the calling index had a higher degree of overlap with this species’ density than did the received sound level of their calls. Classification and regression tree analysis identified calling index as the strongest correlate of CPUE. Passive acoustics has the potential to be an inexpensive means of identifying spatial and temporal trends in abundance for soniferous fish species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated estuarine spatial and temporal overlap of wild and marked hatchery chum salmon (Oncorhynchus keta) fry; the latter included two distinct size groups released near the Taku River estuary (Taku Inlet) in Southeast Alaska (early May releases of ~ 1.9 g and late May releases of ~ 3.9 g wet weight). Our objectives were to compare abundance, body size, and condition of wild chum salmon fry and hatchery chum salmon fry raised under early and late rearing strategies in different habitats of Taku Inlet and to document environmental factors that could potentially explain the distribution, size, and abundance of these chum salmon fr y. We used a sampling design stratified into inner and outer inlet and neritic and littoral habitats. Hatchery fry were rare in the inner estuary in both years but outnumbered wild fry 20:1 in the outer estuary. Hatchery fry were significantly larger than wild fry in both littoral and neritic samples. Abundances of wild and hatchery fry were positively correlated in the outer inlet, indicating the formation of mixed schools of hatchery and wild fry. Spatial and temporal overlap was greatest between wild and early hatchery fry in the outer inlet in both habitats. The early hatchery release coincided with peak abundances of wild fry in the outer inlet, and the distribution of wild and early hatchery fry overlapped for about three weeks. Our results demonstrate that the timing of release of hatchery fry may affect interactions with wild fry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary associations between closely related fish species, both contemporary and historical, are frequently assessed by using molecular markers, such as microsatellites. Here, the presence and variability of microsatellite loci in two closely related species of marine fishes, sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus), are explored by using heterologous primers from red drum (Sciaenops ocellatus). Data from these loci are used in conjunction with morphological characters and mitochondrial DNA haplotypes to explore the extent of genetic exchange between species offshore of Galveston Bay, TX. Despite seasonal overlap in distribution, low genetic divergence at microsatellite loci, and similar life history parameters of C. arenarius and C. nothus, all three data sets indicated that hybridization between these species does not occur or occurs only rarely and that historical admixture in Galveston Bay after divergence between these species was unlikely. These results shed light upon the evolutionary history of these fishes and highlight the genetic properties of each species that are influenced by their life history and ecology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus) are both found within the immediate offshore areas of the Gulf of Mexico, especially around Texas; however information is limited on how much distributional overlap really occurs between these species. In order to investigate spatial and seasonal differences between species, we analyzed twenty years of bay and offshore trawl data collected by biologists of the Coastal Fisheries Division, Texas Parks and Wildlife Department. Sand seatrout and silver seatrout were distributed differently among offshore sampling areas, and salinity and water depth appeared to correlate with their distribution. Additionally, within the northernmost sampling area of the gulf waters, water depth correlated significantly with the presence of silver seatrout, which were found at deeper depths than sand seatrout. There was also an overall significant decrease in silver seatrout abundance during the summer season, when temperatures were at their highest, and this decrease may have indicated a migration farther offshore. Sand seatrout abundance had an inverse relationship with salinity and water depth offshore. In addition, sand seatrout abundance was highest in bays with direct passes to the gulf and correlated with corresponding abundance in offshore areas. These data highlight the seasonal and spatial differences in abundance between sand and silver seatrout and relate these differences to the hydrological and geological features found along the Texas coastline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is evident from several field experiments with vertical longlines and archival tags, as well as concurrent studies of predator-prey relationships, that adult specimens of the deep-water flatfish Greenland halibut (Reinhardtius hippoglossoides) make regular excursions several hundred meters through the water column. The distribution of longline catches within the water column is confined to a well-defined depth layer overlapping with the distribution of blue whiting (Micromesistius poutassou), an important prey species, and depth recordings from archival tags overlap with Atlantic herring (Clupea harengus), the other major fish prey. The degree of pelagic use varies with fish size as well as seasons. Smaller individuals are found further off the bottom, and pelagic activity is greatest during early autumn. Interaction with pelagic prey species can influence results from bottom trawl surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.