5 resultados para Selection effects
em Aquatic Commons
Resumo:
The chief objectives of this brief review are to collate and synthesise quantitative information on the temperature requirements of aquatic insects, and to identify species, and groups of species, that could be useful indicators of climate change and predictors of the ecological effects of change. It arose from the first phase of the Terrestrial Initiative in Global Environmental Research (TIGER), a five-year, NERC Community Programme on the role of the terrestrial biosphere in the science of global change. This phase involved the identification of criteria for selecting species suitable for the study of effects of projected climate change in the British Isles. Field and laboratory studies are reviewed, and criteria for selection of species for future research are suggested. The literature survey shows that no species of aquatic insect can be found to meet all three criteria, but information on the British stoneflies and their eggs already satisfies two of them.
Resumo:
Foraging habitat selection of nesting Great Egrets ( Ardea alba ) and Snowy Egrets ( Egretta thula ) was investigated within an estuary with extensive impounded salt marsh habitat. Using a geographic information system, available habitat was partitioned into concentric bands at five, ten, and 15 km radius from nesting colonies to assess the relative effects of habitat composition and distance on habitat selection. Snowy Egrets were more likely than Great Egrets to depart colonies and travel to foraging sites in groups, but both species usually arrived at sites that were occupied by other wading birds. Mean flight distances were 6.2 km (SE = 0.4, N = 28, range 1.8-10.7 km) for Great Egrets and 4.7 km (SE = 0.48, N = 31, range 0.7-12.5 km) for Snowy Egrets. At the broadest spatial scale both species used impounded (mostly salt marsh) and estuarine edge habitat more than expected based on availability while avoiding unimpounded (mostly fresh water wetland) habitat. At more local scales habitat use matched availability. Interpretation of habitat preference differed with the types of habitat that were included and the maximum distance that habitat was considered available. These results illustrate that caution is needed when interpreting the results of habitat preference studies when individuals are constrained in their choice of habitats, such as for central place foragers.
Resumo:
The introduced grouper species peacock hind (Cephalopholis argus), was the dominant large-body piscivore on the Main Hawaiian Island (MHI) reefs assessed by underwater visual surveys in this study. However, published data on C. argus feeding ecology are scarce, and the role of this species in Hawaiian reef ecosystems is presently not well understood. Here we provide the first comprehensive assessment of the diet composition, prey electivity (dietary importance of prey taxa compared to their availability on reefs), and size selectivity (prey sizes in the diet compared to sizes on reefs) of this important predator in the MHI. Diet consisted 97.7% of fishes and was characterized by a wide taxonomic breadth. Surprisingly, feeding was not opportunistic, as indicated by a strongly divergent electivity for different prey fishes. In addition, whereas some families of large-body species were represented in the diet exclusively by recruit-size individuals (e.g., Aulostomidae), several families of smaller-body species were also represented by juveniles or adults (e.g., Chaetodontidae). Both the strength and mechanisms of the effects of C. argus predation are therefore likely to differ among prey families. This study provides the basis for a quantitative estimate of prey consumption by C. argus, which would further increase understanding of impacts of this species on native fishes in Hawaii.
Resumo:
A description of the Cuban set longline fishery on Campeche Bank, Gulf of Mexico is given, with emphasis on the effects of different species of pelagic fishes used as bait. The target species is the red grouper Epinephelus morio, with incidental species consisting of other epinephelids (13%), lutjanids (5.4%) and sparids (1.6%).
Resumo:
Abstract—Fisheries often target individuals based on size. Size-selective fishing can create selection differentials on life-history traits and, when those traits have a genetic basis, may cause evolution. The evolution of life history traits affects potential yield and sustainability of fishing, and it is therefore an issue for fishery management. Yet fishery managers usually disregard the possibility of evolution, because little guidance is available to predict evolutionary consequences of management strategies. We attempt to provide some generic guidance. We develop an individual-based model of a population with overlapping generations and continuous reproduction. We simulate model populations under size-selective fishing to generate and quantify selection differentials on growth. The analysis comprises a variety of common life-history and fishery characteristics: variability in growth, correlation between von Bertalanffy growth parameters (K and L∞), maturity rate, natural mortality rate (M), M/K ratio, duration of spawning season, fishing mortality rate (F), maximum size limit, slope of selectivity curve, age at 50% selectivity, and duration of fishing season. We found that each characteristic affected the magnitude of selection differentials. The most vulnerable stocks were those with a short spawning or fishing season. Under almost all life-history and fishery characteristics examined, selection differentials created by realistic fishing mortality rates are considerable.