63 resultados para Seasonal water uptake
em Aquatic Commons
Resumo:
The California Department of Fish and Game's Natural Stocks Assessment Project (NSAP) collected water quality data at high tides on a monthly basis from February 1991 to October 1994, and during low tides from March 1992 to June 1994 in the Klamath River estuary to describe water quality conditions. NSAP collected data on water temperature, dissolved oxygen, salinity, depth of saltwedge, and Klamath River flow. Klamath River flows ranged from 44.5 cubic meters per second (1570 cfs) in August 1994 to 3832.2 cubic meters per second (135,315 cfs) in March 1993. Saltwater was present in the estuary primarily in the summer and early fall and generally extended 2 to 3 miles upstream. Surface water temperatures ranged from 6-8° C in the winter to 20-24° C in the summer. Summer water temperatures within the saltwedge were generally 5 to 8° C cooler than the surface water temperature. Dissolved oxygen in the estuary was generally greater than 6 to 7 ppm year-round. A sand berm formed at the mouth of the river each year in the late summer or early fall which raised the water level in the estuary and reduced tidal fluctuation so that the Klamath estuary became essentially a lagoon. I hypothesize the formation of the sand berm may increase the production of the estuary and help provide favorable conditions for rearing juvenile chinook salmon.
Resumo:
The monthly and seasonal water requirements of a small fish pond (0.068ha; maximum capacity of 613.83m super(3)) at the University of Agriculture, Makurdi Fish Farm (Benue, Nigeria) were determined during the period of February to August 1996. The sources of water for the pond were rainfall, (103.4cm), run-off (6.3cm) and regulated inflow (95.0cm). The water loss for the period were Evapotranspiration, (106.74cm), Seepage (71.64cm) and regulated discharge (25.00cm). Evapotranspiration was identified as the main source of water loss while rainfall was the major source of water gain. The mean monthly water deficit was 24.56~c11.43cm while the mean monthly surplus was 9.84~c8.05cm. The quantity of water required to maintain the optimal water level in the pond was 474.00m super(3). Preliminary water budget of the study area showed that rainfed aquaculture can be effectively carried out at Makurdi during the months of June to October with supplementary inflows during the dry season months
Resumo:
We compared seasonal changes in Eurasian watermilfoil (Myriophyllum spicatum L.) characteristics and water temperature for a shallow poind in Davis, CA, and the Truckee River, near Tahoe City, CA. Tissue C and N were 15% lower in plants from the Truckee River than in plants from the Davis pond. Seasonal fluctuations in tissue N were also different. Mean phenolic acid content of Truckee River palnts (162yM g-1) was less than those from the shallow pond (195 yM g-1). Phenolic acid content was positively related to tissue C for Truckee River and Davis pond plants and, tissue C:N ratio for Truckee River plants. Mean monthly water temperature (1990 to 1998) for the Truckee River site was less than 20 C. Water temperatures were warmer in August and September at this site. However, Eurasian watermilfoil collected during these months was characterized by lower levels of tissue N. During a 29-month period beginning January 1994, mean monthly water temperature for the Davis pond exceeded 20 C, only during July to September 1995. Tissue N was generally greater during summer for watermilfoil growing in the pond. These results imply that Eurasian watermilfoil biological control agents may have different developmental rates in these habitats, and thus different impacts on watermilfoil populations.
Resumo:
This study was under taken at Karoun Lake Dam No.4. (Southwest of Iran). Water samples were collected from March 2012 to February 2013 in three selected silts. Environmental parameters and chlorophyll a concentration were measured, as well as identification and abundance of Phytoplankton communities were studied. According to this study, 30 species of Phytoplankton were identified at four seasons. Most abundance was related to the phyla Bcillariphyta (17 species), Chlorophyta (6 species), Crysophyra (4 species), Dinophyta (2 species) and Cyanophyta (1 species) respectively. The results showed, the maximum rate of chlorophyll a concentration was measured in the warm with minimum level measured in the cold months. The rate of chlorophyll a concentration showed an oligotrophic condition in the lake of karoon 4 dam. positive significant correlation were seen between the parameters of COD,NO3,temperature, pH, turbidity, chlorophyll a and phytoplankton abundance (P<0.01). The chlorophyll a concentration and phytoplankton community had a significant negative correlation with transparency (-P < 0.01). According to this research, 4 phyla of zooplankton was identified, include Rotifera, Protozoa, Cladocera and Copepoda. Overal 43 species were identified at four seasons. Most abundance was related to the phyla Rotifera (27 species), Copepoda (7 species), Cladocera (5 species) and Protozoa (4 species) respectively. The chlorophyll a concentration, amount of phosphate and zooplankton indicator spesies, showed an oligotrophic condition in the lake of karoon 4 dam. A positive significant correlation was seen between all groups of zooplanktons abundance and temperature, as well as chlorophyll a concentration. (P<0.01) , whereas, there was negative correlation whith no significant between DO and zooplankton communities (P>0.05).
Resumo:
During a 25-hour hydrographic times series at two stations near the head of Monterey Submarine Canyon, an internal tide was observed with an amplitude of 80 to 115 m in water depths of 120 and 220 m respectively. These large oscillations produced daily variations in hydrographic and chemical parameters that were of the same magnitude as seasonal variations in Monterey Bay. Computed velocities associated with the internal tide were on the order of 10 em/sec, and this tidally induced circulation may have a significant role in the exchange of deep water between Monterey Submarine Canyon and the open ocean. (PDF contains 49 pages)
Resumo:
Annual cycles of relative abundance are described for phytoplankton species collected from Monterey Bay, California, from July 1974 to June 1976, and the population dynamics related to the annual hydrographic cycle. Neritic diatom species dominated the population during the Upwelling and Oceanic periods, with dinoflagellate species becoming numerically more important during the Davidson period. Recurrent species groups identified using Fager's regroup analysis revealed the presence of a large neritic group of overwhelming numerical importance. This group is composed of indigenous species and is present in the bay during most of the year. Conspicuous changes in the phytoplankton population occurred predominantly among species within this group. During the Davidson period, the advection of southern waters into the bay may temporarily displace the endemic species with dinoflagellates becoming numerically more important. A red tide bloom of Gonyaulax polyedra occurred during this period in 1974, which dominated the phytoplankton population for a period of six weeks. The population dynamics of two hydrographically different stations were compared. A station located over the deep waters of the submarine canyon exhibited much lower phytoplankton standing stocks than a station located over the shelf area in the south of the bay, but seasonal changes in relative abundance and species composition were similar. Physical and chemical differences observed between the two stations appear to be the result of the presence of more recently upwelled water in the canyon area, and higher biological utilization in the south of the bay. A close correlation of species diversity with the depth of the mixed layer was observed, with diversity rising with the shoaling of the thermocline. It is suggested that this may reflect the introduction of new species from below the thermocline into the mixed layer as a result of upwelling activity. It is also suggested that this may be an artifact due to sampling problems associated with internal waves. (Document contains 100 pages.)
Resumo:
A large part of western Manatee County is devoted to the growing of winter vegetables and citrus fruits. As in most of peninsular Florida, rainfall in the county during the growing season is not sufficient for crop production and large quantites of artesian water are used for irrigation. The large withdrawals of artesian water for irrigation result in a considerable decline of the artesian head in the western part of the county. This seasonal decline of the artesian head has become larger as the withdrawal of artesian water has increased. The lowering of the fresh-water head in some coastal areas in the State has resulted in an infiltration of sea water into the water-bearing formations. The presence of salty water in the artesian aquifer in parts of the coastal area of Manatee County indicates that sea water may also have entered the waterbearing formations in this area as a result of the decline of artesian pressure during the growing season. The purpose of the investigation is to make a detailed study of the geology and ground-water resources of the county, primarily to determine whether salt-water encroachment has occurred or is likely to occur in the coastal area. (PDF contains 38 pages.)
Resumo:
We examined the impacts of mechanical shredding (i.e.. shredding plants and leaving biomass in the system) of the water chestnut (Trapa natans) on water quality and nutrient mobilization in a control and experimental site in Lake Champlain (Vermont-New York). A 1-ha plot was mechanically shredded within 1 h on 26 July, 1999. Broken plant material was initially concentrated on the lake surface of the experimental station after shredding, and was noticeable on the lake surface for 19 d. Over a two week period after shredding. concentrations of total nitrogen (N) and phosphorus (P), and soluble reactive P increased in the lower water column of the experimental station, coinciding with decomposition of water chestnut. Sediments in the control and experimental stations exhibited vet-v low rates of N and P release and could not account for increases in nutrient concentrations in the water column after mechanical shredding. Shredded plant material deployed in mesh bags at the experimental station lost similar to 70% of their total mass, and 42%, N and 70% P within 14 d. indicating Substantial nutrient mobilization via autolysis and decomposition. Chlorophyll a concentrations increased to 35 g/L at the experimental station on day 7 after shredding, compared to a concentration of 4 g/L at the control station. suggesting uptake of mobilized nutrients by phytoplankton. Disruption Of the Surface canopy of water chestnut by shredding was associated with marked increases in turbidity and dissolved oxygen, suggesting increased mixing at the experimental site.
Resumo:
Fish collections under varying ecological conditions were made by trawling and seining, monthly and quarterly in depths of <1 m to depths of 3 m of the Florida Bay portion of Everglades National Park, Florida. From May 1973 through September 1976, a total of 182,530 fishes representing 128 species and 50 families were taken at 27 stations. An additional 21 species were identified from sportfish-creel surveys and supplemental observations. Most of the species collected were juveniles of species that occur as adults in the Florida Bay creel census survey, or were small species that were seasonal residents. Marked temporal and spatial abundance of the catches was observed. The greatest numbers and biomass of the fishes occurred in the wet season (summer/fall), whereas lowest numbers and biomass appeared during the dry season (winter/spring) The greatest abundance and diversity of fishes was found in western Florida Bay followed by eastern and central Bay regions respectively. Overall, five species comprised 75% of the numerical total while eleven species made up 75% of the total biomass. Collections were dominated numerically by anchovies (Engraulidae), especially Anchoa mitchilli, in western Florida Bay. Mojarras (Gerridae), mostly silver jenny Eucinostomus gula, and porgies (Sparidae), especially pinfish Lagodon rhomboides, dominated numerically in central and eastern portions of the Bay, respectively. Except for salinity, other measured physico-chemical parameters (water temperature, pH, dissolved oxygen, and turbidity) showed no variation beyond ranges considered normal for shallow, tropical marine environments. Salinity varied from 0 to 66 ppt near the mainland. Nearshore hypersaline conditions (>45 ppt) persisted for nearly 2 years during the 1974 - 1975 severe drought period. Significant reductions in fish abundance/diversity were observed in relation to hypersaline conditions. Bay-wide macrobenthic communities were mapped (presence/absence) and were primarily comprised of turtle grass (Thalassia), shoalgrass [(Diplanthera = (Halodule)], and/or green algae Penicillus. Seasonal dieoff of seagrasses was observed in north-central Florida Bay. (PDF contains 107 pages)
Resumo:
The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)
Resumo:
Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.)
Resumo:
The objective of this study was to describe the physical and ichthyological changes occurring seasonally and annually in the south San Francisco Bay, based on the results of 2,561 otter trawl and water samples obtained between February 1973 and June 1982. Temperature varied predictably among seasons in a pattern that varied little between years. Salinity also underwent predictable seasonal changes but the pattern varied substantially between years. The most abundant species of fish were northern anchovy (Engraulis mordax), English sole (Parophrys vetulus), and shiner surfperch (Cymatogaster aggregata). The majority of the common fish species were most abundant during wet years and least abundant in dry years. Numeric diversity was highest during the spring and early summer, with no detectable interannual trends. Species composition changed extensively between seasons and between years, particularly years with extremely high or extremely low freshwater inflows. All the common species exhibited clustered spatial distributions. Such spatial clustering could affect the interpretation of data from estuarine sampling programs. Gobies (Family Gobiidae) were more abundant during flood tides than during ebb tides. English sole were significantly more abundant in shallower areas. Shiner surfperch showed significant differences in abundance between sample areas.(PDF file contains 28 pages.)
Resumo:
Village tanks are put to a wide range of uses by the rural communities that depend on them for their survival. As the primacy of irrigation has decreased under these tanks due to a variety of climatic and economic reasons there is a need to reevaluate their use for other productive functions. The research presented in this paper is part of a programme investigating the potential to improve the management of living aquatic resources in order to bring benefits to the most marginal groups identified in upper watershed areas. Based on an improved typology of seasonal tanks, the seasonal changes and dynamics of various water quality parameters indicative of nutrient status and fisheries carrying capacity are compared over a period of one year. Indicators of Net (Primary) Productivity (NP): Rates of Dissolved Oxygen (DO) change, Total Suspended Solids (TSS): Total Suspended Volatile solids (TVSS) ratios are the parameters of principle interest. Based on these results a comparative analysis is made on two classes of ‘seasonal’ and ‘semi-seasonal’ tanks. Results indicate a broad correlation in each of these parameters with seasonal trends in tank hydrology. Highest productivity levels are associated with periods of declining water storage, whilst the lowest levels are associated with the periods of maximum water storage shortly after the NW monsoon. This variation is primarily attributed to dilution effects associated with depth and storage area. During the yala period, encroachment of the surface layer by several species of aquatic macrophyte also has progressively negative impacts on productivity. The most seasonal tanks show wider extremes in seasonal nutrient dynamics, overall, with less favourable conditions than the ‘semi-seasonal’ tanks. Never the less all the tanks can be considered as being highly productive with NP levels comparable to fertilised pond systems for much of the year. This indicates that nutrient status is not likely to be amongst the most important constraints to enhancing fish production. Other potential management improvements based on these results are discussed. [PDF contains 19 pages]
Resumo:
Phosphorus removal by wetlands and basins in Lake Tahoe may be improved through designing these systems to filter storm water through media having higher phosphorus removal capabilities than local parent material. Substrates rich in iron, aluminum and calcium oftentimes have enhanced phosphorus removal. These substrates can be naturally occurring, byproducts of industrial or water treatment processes, or engineered. Phosphorus removal fundamentally occurs through chemical adsorption and/or precipitation and much of the phosphorus can be irreversibly bound. In addition to these standard media, other engineered substrates are available to enhance P removal. One such substrate is locally available in Reno and uses lanthanum coated diatomaceous earth for arsenate removal. This material, which has a high positive surface charge, can also irreversibly remove phosphorus. Physical factors also affect P removal. Specifically, specific surface area and particle shape affect filtration capacity, contact area between water and the surface area, and likelihood of clogging and blinding. A number of substrates have been shown to effectively remove P in case studies. Based upon these studies, promising substrates include WTRs, blast furnace slag, steel furnace slag, OPC, calcite, marble Utelite and other LWAs, zeolite and shale. However, other nonperformance factors such as environmental considerations, application logistics, costs, and potential for cementification narrow the list of possible media for application at Tahoe. Industrial byproducts such as slags risk possible leaching of heavy metals and this potential cannot be easily predicted. Fly ash and other fine particle substrates would be more difficult to apply because they would need to be blended, making them less desirable and more costly to apply than larger diameter media. High transportation costs rule out non-local products. Finally, amorphous calcium products will eventually cementify reducing their effectiveness in filtration systems. Based upon these considerations, bauxite, LWAs and expanded shales/clays, iron-rich sands, activated alumina, marble and dolomite, and natural and lanthanum activated diatomaceous earth are the products most likely to be tested for application at Tahoe. These materials are typically iron, calcium or aluminum based; many have a high specific surface area; and all have low transportation costs. (PDF contains 21 pages)
Resumo:
The phytoplankton distribution of the Shen Reservoir, Bukuru in the Jos Plateau, Nigeria was monitored at 6 depths. Higher floral abundance occurred within the upper 00-03 meters with highest values at the first 1 meter. Bacillariophyceae and Dinophyceae recorded higher values in March-April with lower values in July and January respectively. Phytoplankton were most abundant in the rainy season. Secchi disc transparency was lowest in the peak of the rainy season (July) due to higher levels of suspended matter resulting from the increased run-off from surrounding farmlands of allochthonous materials as well as higher levels of phytoplankton population arising from the former factor. The low water temperature of December/January 15 degree C plus or minus 2 degree C might have depressed growth among the major groups of plankters but enhanced rapid multiplication of the Chlorophyta, Trachelomonas which showed a bloom at this season