12 resultados para Seabird

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of incidental marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for broadbill swordfish, Xiphias gladius, and common thresher shark, Alopias vulpinus, are summarized for the 7-year period, 1996 to 2002. Fishery observer coverage was 19% over the period (3,369 days observed/17,649 days fished). An experiment to test the effectiveness of acoustic pingers on reducing marine mammal entanglements in this fishery began in 1996 and resulted in statistically significant reductions in marine mammal bycatch. The most commonly entangled marine mammal species were the short-beaked common dolphin, Delphinus delphis; California sea lion, Zalophus californianus; and northern right whale dolphin, Lissodelphis borealis. Estimated mortality by species (CV and observed mortality in parentheses) from 1996 to 2002 is 861 (0.11, 133) short-beaked common dolphins; 553 (0.16, 103) California sea lions; 151 (0.25, 31) northern right whale dolphins; 150 (0.21, 27) northern elephant seals, Mirounga angustirostris; 54 (0.41, 10) long-beaked common dolphins, Delphinus capensis; 44 (0.53, 6) Dall’s porpoise, Phocoenoides dalli; 19 (0.60, 5) Risso’s dolphins, Grampus griseus; 11 (0.71, 2) gray whales, Eschrichtius robustus; 7 (0.83, 2) sperm whales, Physeter macrocephalus; 7 (0.96, 1) short-finned pilot whales, Globicephala macrorhychus; 12 (1.06, 1) minke whales, Balaenoptera acutorostrata; 5 (1.05, 1) fin whales, Balaenoptera physalus; 11 (0.68, 2) unidentified pinnipeds; 33 (0.52, 4) leatherback turtles, Dermochelys coriacea; 18 (0.57, 3) loggerhead turtles, Caretta caretta; 13 (0.73, 3) northern fulmars, Fulmarus glacialis; and 6 (0.86, 2) unidentified birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of recent seabird bycatch studies in the International Commission for the Conservation of Atlantic Tunas Convention Area were combined to estimate total seabird bycatch of pelagic longline fishing in the Atlantic Ocean, and bycatch per selected species. Available studies do not apply to the full spatial and temporal extent of the fishing effort, so assumptions were made to account for missing information. Over the 4 years from 2003 to 2006 the total seabird bycatch estimate was 48,500. Results indicate that about 57% of the pelagic longline seabird bycatch was albatrosses (Diomedea, Phoebastria, Thalassarche, Phoebetria spp.). This mortality is at a level to cause concern for the smaller and more vulnerable albatross populations in the region. Variation in annual seabird bycatch was caused by variation in total fishing effort, and movement of effort away from areas of higher seabird bycatch rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this project is to model seabird flock size data to provide recommendations to the Bureau of Ocean and Energy Management for offshore wind turbine placement. Our hypothesis is that ecological characteristics influence which statistical distribution will provide the best fit to seabird flock size data. To test this, seabird species can be grouped based on shared ecological traits, such as foraging mechanism or diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improving PICES CO2 measurement quality The status of the Bering Sea: July - December 1998 The state of the eastern North Pacific since October 1998 The state of the western North Pacific in the second half of 1998 Paul Henry LeBlond Report on the ICES/SCOR Symposium on Ecosystem Effects of Fishing What is the carrying capacity of the North Pacific Ocean for salmonids? Southeast Bering Sea Carrying Capacity (SEBSCC) The Whole Earth System: The role of regional programs Sub-Arctic Gyre Experiment in the North Pacific Ocean (SAGE) The Alaska Predator Ecosystem Experiment (APEX): An integrated seabird and forage fish investigation sponsored by the Exxon Valdez Oil Spill Trustee Council ICES and GOOS: A progress report Report on GOOS Living Marine Resource Panel Meeting

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimizing bycatch of seabirds is a major goal of the U.S. National Marine Fisheries Service. In Alaska waters, the bycatch (i.e., inadvertent catches) of seabirds has been an incidental result of demersal groundfish longline fishery operations. Notably, the endangered short-tailed albatross (Phoebastria albatrus) has been taken in this groundfish fishery. Bycatch rates of seabirds from individual vessels may be of particular interest because vessels with high bycatch rates may not be functioning effectively with seabird avoidance gears, and there may be a need for suggestions on how to use these avoidance gears more effectively. Therefore, bycatch estimates are usually made on an individual vessel basis and then summed to obtain the total estimate for the entire fleet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the North Pacific Ocean, an ecosystem-based fishery management approach has been adopted. A significant objective of this approach is to reduce interactions between fishery-related activities and protected species. We review management measures developed by the North Pacific Fishery Management Council and the National Marine Fisheries Service to reduce effects of the groundfish fisheries off Alaska on marine mammals and seabirds, while continuing to provide economic opportunities for fishery participants. Direct measures have been taken to mitigate known fishery impacts, and precautionary measures have been taken for species with potential (but no documented) interactions with the groundfish fisheries. Area closures limit disturbance to marine mammals at rookeries and haulouts, protect sensitive benthic habitat, and reduce potential competition for prey resources. Temporal and spatial dispersion of catches reduce the localized impact of fishery removals. Seabird avoidance measures have been implemented through collaboration with fishery participants and have been highly successful in reducing seabird bycatch. Finally, a comprehensive observer monitoring program provides data on the location and extent of bycatch of marine mammals and seabirds. These measures provide managers with the flexibility to adapt to changes in the status of protected species and evolving conditions in the fisheries. This review should be useful to fishery managers as an example of an ecosystem-based approach to protected species management that is adaptive and accounts for multiple objectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1989-1991, the U.S. Fish and Wildlife Service surveyed breeding populations of seabirds on the entire California coast. This study was sponsored by the Minerals Management Service in relation to outer continental shelf oil and gas leasing. At 483 nesting sites (excluding terns and skimmers in southern California), we estimated 643,307 breeding birds of 21 seabird species including: 410 Fork-tailed Storm-petrel (Oceanodroma furcata); 12,551 Leach's Storm-petrel (O. leucorhoa); 7,209 Ashy Storm-petrel (O. homochroa); 274 Black Storm-petrel (O. melania); 11,916 Brown Pelican (Pelecanus occidentalis); 10,037 Double-crested Cormorant (Phalacrocorax auritus); 83,394 Brandt's Cormorant (P. penicillatus); 14,345 Pelagic Cormorant (P. pelagicus); 888 Black Oystercatcher (Haemotopus bachmani); 4,764 California Gull (Larus californicus); 61,760 Western Gull (L. occidentalis); 2,838 Caspian Tern (Sterna caspia) (excluding southern California); 3,550 Forster's Tern (S. forsteri) (excluding southern California); 272 Least Tern (S. albifrons) (excluding southern California); 351,336 Common Murre (Uria aalge); 15,470 Pigeon Guillemot (Cepphus columba); 1,821 Marbled Murrelet (Brachyramphus marmoratus); 1,760 Xantus' Murrelet (Endomychura hypoleuca); 56,562 Cassin's Auklet (Ptychoramphus aleuticus); 1,769 Rhinoceros Auklet (Cerorhinca monocerata); and 276 Tufted Puffin (Fratercula cirrhata). The inland, historical or hybrid breeding status of American White Pelican (P. erythrorynchus), American Oystercatcher (H. palliatus), Heermann's Gull (L. heermanni), Ring-billed Gull (L. delawarensis), Glaucous-winged Gull (L. glaucescens) and Black Tern (Chlidonias niger) are discussed. Estimates for Gull-billed Tern (S. nilotica), Royal Tern (S. maxima), Elegant Tern (S. elegans) and Black Skimmer (Rhynchops niger) will be included in the final draft of this report. Overall numbers were slightly lower than reported in 1975-1980 surveys (summarized in Sowls et al. 1980. Catalog of California seabird colonies. U.S. Dept. Int., Fish Wildl. Serv., Biol. Serv. Prog., FWS/OBS 37/80). Recent declines were found or suspected for Fork-tailed Storm-petrel, Leach's Storm-petrel, White Pelican, Black Tern, Caspian Tern, Least Tern, Common Murre and Marbled Murrelet. Recent increases were found or suspected for Brown Pelican, Double-crested cormorant, California Gull, Western Gull, Forster's Tern and Rhinoceros Auklet. Similar numbers were found for other species or trends could not be determined without additional surveys, studies and/or more in-depth comparisons with previous surveys. The status of terns and skimmers in southern California has not yet been finalized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bycatch can harm marine ecosystems, reduce biodiversity, lead to injury or mortality of protected species, and have severe economic implications for fisheries. On 12 January 2007, President George W. Bush signed the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006 (MSRA). The MSRA required the U.S. Secretary of Commerce (Secretary) to establish a Bycatch Reduction Engineering Program (BREP) to develop technological devices and other conservation engineering changes designed to minimize bycatch, seabird interactions, bycatch mortality, and post-release mortality in Federally managed fisheries. The MSRA also required the Secretary to identify nations whose vessels are engaged in the bycatch of protected living marine resources (PLMR’s) under specified circumstances and to certify that these nations have 1) adopted regulatory programs for PLMR’s that are comparable to U.S. programs, taking into account different conditions, and 2) established management plans for PLMR’s that assist in the collection of data to support assessments and conservation of these resources. If a nation fails to take sufficient corrective action and does not receive a positive certification, fishing products from that country may be subject to import prohibitions into the United States. The BREP has made significant progress to develop technological devices and other conservation engineering designed to minimize bycatch, including improvements to bycatch reduction devices and turtle excluder devices in Atlantic and Gulf of Mexico trawl fisheries, gillnets in Northeast fisheries, and trawls in Alaska and Pacific Northwest fisheries. In addition, the international provisions of the MSRA have provided an innovative tool through which the United States can address bycatch by foreign nations. However, the inability of the National Marine Fisheries Service to identify nations whose vessels are engaged in the bycatch of PLMR’s to date will require the development of additional approaches to meet this mandate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in development of offshore renewable energy facilities has led to a need for high-quality, statistically robust information on marine wildlife distributions. A practical approach is described to estimate the amount of sampling effort required to have sufficient statistical power to identify species specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and “coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence probability for each species of interest. For example, a location with average abundance or occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The choice of the effect size used to define hot and coldspots will generally depend on a combination of ecological and regulatory considerations. A method is also developed for testing the statistical significance of possible hotspots and coldspots. Both methods are illustrated with historical seabird survey data from the USGS Avian Compendium Database.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our analyses of observer records reveal that abundance estimates are strongly influenced by the timing of longline operations in relation to dawn and dusk and soak time— the amount of time that baited hooks are available in the water. Catch data will underestimate the total mortality of several species because hooked animals are “lost at sea.” They fall off, are removed, or escape from the hook before the longline is retrieved. For example, longline segments with soak times of 20 hours were retrieved with fewer skipjack tuna and seabirds than segments with soak times of 5 hours. The mortality of some seabird species is up to 45% higher than previously estimated. The effects of soak time and timing vary considerably between species. Soak time and exposure to dusk periods have strong positive effects on the catch rates of many species. In particular, the catch rates of most shark and billfish species increase with soak time. At the end of longline retrieval, for example, expected catch rates for broadbill swordfish are four times those at the beginning of retrieval. Survival of the animal while it is hooked on the longline appears to be an important factor determining whether it is eventually brought on board the vessel. Catch rates of species that survive being hooked (e.g. blue shark) increase with soak time. In contrast, skipjack tuna and seabirds are usually dead at the time of retrieval. Their catch rates decline with time, perhaps because scavengers can easily remove hooked animals that are dead. The results of our study have important implications for fishery management and assessments that rely on longline catch data. A reduction in soak time since longlining commenced in the 1950s has introduced a systematic bias in estimates of mortality levels and abundance. The abundance of species like seabirds has been over-estimated in recent years. Simple modifications to procedures for data collection, such as recording the number of hooks retrieved without baits, would greatly improve mortality estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We used the diet of a seabird, the common murre (Uria aalge), nesting on Southeast Farallon Island and feeding in the Gulf of the Farallones, California, as an index to abundance of juvenile rockfish, then related fish abundance to indices of turbulence and upwelling over an 18-year period, 1973-1990. Strong, persistent upwelling or downwelling led to reduced availability of fish in the study area, in contrast to great abundance when upwelling was mild or pulsed. ... On the basis of our study, one effect might be that fishes thought strong enough to resist Ekman transport could be transported out of normal areas of recruitment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).