4 resultados para Scholars, Muslim

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-governmental organizations (NGOs) are now major players in the realm of environmental conservation. While many environmental NGOs started as national organizations focused around single-species protection, governmental advocacy, and preservation of wilderness, the largest now produce applied conservation science and work with national and international stakeholders to develop conservation solutions that work in tandem with local aspirations. Marine managed areas (MMAs) are increasingly being used as a tool to manage anthropogenic stressors on marine resources and protect marine biodiversity. However, the science of MMA is far from complete. Conservation International (CI) is concluding a 5 year, $12.5 million dollar Marine Management Area Science (MMAS) initiative. There are 45 scientific projects recently completed, with four main “nodes” of research and conservation work: Panama, Fiji, Brazil, and Belize. Research projects have included MMA ecological monitoring, socioeconomic monitoring, cultural roles monitoring, economic valuation studies, and others. MMAS has the goals of conducting marine management area research, building local capacity, and using the results of the research to promote marine conservation policy outcomes at project sites. How science is translated into policy action is a major area of interest for science and technology scholars (Cash and Clark 2001; Haas 2004; Jasanoff et al. 2002). For science to move policy there must be work across “boundaries” (Jasanoff 1987). Boundaries are defined as the “socially constructed and negotiated borders between science and policy, between disciplines, across nations, and across multiple levels” (Cash et al. 2001). Working across the science-policy boundary requires boundary organizations (Guston 1999) with accountability to both sides of the boundary, among other attributes. (Guston 1999; Clark et al. 2002). This paper provides a unique case study illustrating how there are clear advantages to collaborative science. Through the MMAS initiative, CI built accountability into both sides of the science-policy boundary primarily through having scientific projects fed through strong in-country partners and being folded into the work of ongoing conservation processes. This collaborative, boundary-spanning approach led to many advantages, including cost sharing, increased local responsiveness and input, better local capacity building, and laying a foundation for future conservation outcomes. As such, MMAS can provide strong lessons for other organizations planning to get involved in multi-site conservation science. (PDF contains 3 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scholars recently derived simple models from published data for the prediction from water temperature of hatching times for the eggs of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.). A similar model to predict eyeing time for salmon eggs was obtained and used in this study, largely by analogy, to develop equations which might be used to obtain very approximate estimates of eyeing and swim-up times for salmon and brown trout. As the models were based on data for constant temperatures and some of them also had a very inadequate data base, it was desirable that they should be tested, as far as possible, against field and hatchery observations. The present report is a brief summary based on such data as have been obtained to date. None of the data sets were ideal for the purpose and the various inadequacies are discussed later in this report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three fishing communities in coastal Bangladesh namely: 1) Hindu community near Chittagong; 2) Muslim community in Rehania; and 3) Bhuddist community of Rakhaipara were studied, and each shared the same credit marketing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The western United States is characterized by heterogeneous patterns of seasonal precipitation regimes due to the hierarchy of climatic controls that operate at different spatial scales. A climatology of intermonthly precipitation changes, using data from more than 4,000 stations including high-elevation sites, illustrate how different climatic controls explain the spatial distribution of the seasonal precipitation maximum. These results indicate that smaller-scale climatic controls must be considered along with larger-scale ones to explain patterns of spatial climate heterogeneity over mountainous areas. The results also offer important implications for scholars interested in assessing spatial climatic variations of the western United States at different timescales.