8 resultados para Scholar nourishment

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the third post-nourishment survey (January 1989) results for the Sand Key Phase II beach nourishment project carried out in June, 1988. The monitoring program to this beach nourishment project is a joint effort between the University of South Florida and University of Florida. The field surveys include a total of 26 profiles, encompassing approximately 3 miles of shoreline extending from DNR R-96 to R-1ll. The total calculated volume loss of sand in the nourished segment (from R-99G to R-107) between the July 88 and January 89 surveys is 51,113 cubic yards, which is a loss about 9.7 percent of 529,150 cubic yards actually placed in the nourishment project. The total loss of sand computed in the entire survey area is 26,796 cubic yards, which is only 5.1 percent of the sand placed in the nourishment project. It is stressed that a part of these net volume reductions is due to the background erosion and not due to spreading losses induced by the nourishment project. (PDF contains 168 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the amount of detergent industries in world in spite of having abundant benefits; entering a new kind of contamination into environment and attract the attention of environment liable of different countries to itself. Entering detergents into an aqueous solution cause pollution of water sources and environment in respect of appearing e problem and charges like: nutritive phenomenon, decomposition of hard group of detergent and producing foam. After using Detergents, they were poured into rivers, seas and lakes and have destructive effect on environment. A lot of hygiene problems were attributed to the water having detergents more than allowed value. So, it is specified the importance of eliminating detergents from contaminated water and it is application for secondary use. In order to attain to this aim, we can use inorganic nano and micro-caolin. In this study the adsorptive properties of detergent on the micro and nano caolin adsorbents were studied and the effect of various parameters like the amount of adsorptive materials, initial concentration of detergent, speed of stirring, electrolyte, temperature, time and pH were determined. The surface area of micro- and nano-caoline was reported 11.867 and 49.1438 m2 g-1, respectively. That increasing in nano-caoline surface area confirms increasing in capacity and more rate of adsorption. The results gained by this research recommend using micro- and nano-caolin as a plentiful, available and effective adsorbents. Also in comparison, using nano-caoline was recommended in order to have more effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fixed-bed hydraulic model of Jupiter Inlet, Florida, was constructed for the purpose of testing measures designed to remedy problems of sediment erosion and deposition in the inlet area. Both tide-induced flows as well as waves were simulated in the model which was built on an undistorted scale of 1:49. Model verification was based on prototype measurements of waves, tides and currents. Results have been interpreted in terms of the influence of various proposed remedial schemes on flow velocity magnitude, distribution and wave height at various locations within the study area. A stability parameter has been utilized for evaluating the degree of sediment erosion or deposition at a given location. Various structural solutions were examined in the model. It is proposed that, in the initial phase of solution implementation, sediment removal/nourishment methods be used primarily to mitigate the existing problems. New structures, as per model test results, should be installed under subsequent phases, only if sediment management procedures do not prove to be adequate. The currently followed procedure of periodic sand trap dredging may be extended to include the new dredging/nourishment requirements. (PDF contains 245 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The framework of sediment budget concepts provides a formalized procedure to account for the various components of sediment flux and the changes of volume that occur within a given region. Sediment budget methodology can be useful in a number of coastal engineering and research applications, including: inferring the amount of onshore sediment transport for a nearshore system that contains an "excess of sediment", determining sediment deficits to downdrift beaches as a result of engineering works at navigational entrances, evaluating the performance of a beach nourishment project, inferring the distribution of longshore sediment transport across the surf zone, etc. This chapter reviews briefly the governing equations for sediment budget calculations, considers various measurement and other bases for determining the sediment flux components necessary to apply the sediment budget concept and finally for illustration purposes, applies the sediment budget concept to several examples. (PDF contains 52 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research has proven that Shoreline Erosion is caused by excess water contained within the shore face. This Research presents an opportunity to control erosion by managing the near shore water table. Our Research on Bogue Banks North Carolina suggests that our buildings and other impervious surfaces collect and concentrate water from storm rain runoff into the surface water table and within the critical beach front water exit point. Presently our Potable Fresh Water is supplied from deep wells located beneath an impervious layer of Marl. After our use, the Waste water is drained into the Surface Aquifer, the combined waste and storm rain water raises the Surface Aquifer water table and produces Erosion. The Deep Aquifers presently supplying our Potable Water have an unknown recharge rate, with increasing reports of Salt Water intrusion. We believe our Vital Fresh water supply system should be modified to supply Reverse Osmosis treatment plants from shallow wells. This will lower the Surface Water Table. These Shallow wells, either horizontal or vertical, might be located within the beach front, adjacent to high erosion risk properties. Beach Drains and Reverse Osmosis Water systems are new and proven technologies. By combining these technologies we can reduce or reverse Shore Erosion, ensure a safe Potable Water supply, reduce requirements for periodic beach nourishment, reduce taxes and protect our property well into the Future. (PDF contains 5 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft engineering solutions are the current standard for addressing coastal erosion in the US. In South Carolina, beach nourishment from offshore sand deposits and navigation channels has mostly replaced construction of seawalls and groins, which were common occurrences in earlier decades. Soft engineering solutions typically provide a more natural product than hard solutions, and also eliminate negative impacts to adjacent areas which are often associated with hard solutions. A soft engineering solution which may be underutilized in certain areas is shoal manipulation. (PDF contains 4 pages)