24 resultados para Saline adaptation
em Aquatic Commons
Resumo:
Upward leakage of saline water from an artesian aquifer below 1,500 feet has caused an increase in chloride concentration in the lower Hawthorn aquifer from less than 1,000 mg/1 (milligrams per liter) to values ranging from about 1,300 to 15,000 mg/1. Similarly the higher temperatures of the intruding water has caused an increase in water temperatures in the aquifer from 82"F to values ranging from 83 to 93"F. The intruding water moves upward either through the open bore hole of deep wells or test holes, or along a fault or fracture system, which has been identified in the area. From these points of entry into the lower Hawthorn aquifer, the saline water spreads laterally toward the south and southeast, but is generally confined to components of the fault system. The saline water moves upward from the lower Hawthorn aquifer into the upper Hawthorn aquifer through the open bore hole of wells, which connect the aquifers. This movement has resulted in an increase in chloride from less than 200 mg/1 in the unaffected parts of the upper Hawthorn aquifer to values commonly ranging from about 300 to more than 3,000 mg/1 in parts of the aquifer affected by upward leakage. The upper Hawthorn aquifer is the principal source of ground-water supply for public water-supply systems in western Lee County. Similar effects have been noted in the water-table aquifer, where chloride increased from less than 100 to concentrations ranging from about 500 to more than 5,000 mg/1. This was caused by the downward infiltration of water discharged at land surface from wells tapping the lower Hawthorn aquifer. The spread of saline water throughout most of the McGregor Isles area is continuing as of 1971. (40 page document)
Resumo:
Since the early years of the 21st century, and in particular since 2007, the U.S. has been awakening rapidly to the fact that climate change is underway and that even if stringent efforts are undertaken to mitigate greenhouse gas emissions, adaptation to the unavoidable impacts from the existing commitment to climate change is still needed and needs to be begun now. This report provides an historical overview of the public, political, and scientific concern with adaptation in the United States. It begins by briefly distinguishing ongoing, historical adaptation to environmental circumstances from deliberate adaptation to human‐induced climate change. It then describes the shift from the early concerns with climate change and adaptation to the more recent awakening to the need for a comprehensive approach to managing the risks from climate change. Ranging from the treatment of the topic in the news media to the drafting of bills in Congress, to state and local government activities with considerable engagement of NGOs, scientists and consultants, it is apparent that adaptation has finally, and explosively, emerged on the political agenda as a legitimate and needed subject for debate. At the same time, the current policy rush is not underlain by widespread public engagement and mobilization nor does it rest on a solid research foundation. Funding for vulnerability and adaptation research, establishing adequate decision support institutions, as well as the building of the necessary capacity in science, the consulting world, and in government agencies, lags far behind the need. (PDF contains 42 pages)
Resumo:
Toxic-waste associated with coastal brownfield sites can pose serious risks to human and environmental health. In light of anticipated sea-level rise (SLR) due to global climate change, coastal brownfields require heightened attention. The primary intent of this study is to pose questions and encourage discussion of this problem among policy makers. Impacts from SLR on coastal zones are examined within a brownfield policy framework and, current coastal brownfield policy discussions with respect to SLR are also examined. (PDF contains 4 pages)
Resumo:
Climate change has rapidly emerged as a significant threat to coastal areas around the world. While uncertainty regarding distribution, intensity, and timescale inhibits our ability to accurately forecast potential impacts, it is widely accepted that changes in global climate will result in a variety of significant environmental, social, and economic impacts. Coastal areas are particularly vulnerable to the effects of climate change and the implications of sea-level rise, and coastal communities must develop the capacity to adapt to climate change in order to protect people, property, and the environment along our nation’s coasts. The U.S. coastal zone is highly complex and variable, consisting of several regions that are characterized by unique geographic, economic, social and environmental factors. The degree of risk and vulnerability associated with climate change can vary greatly depending on the exposure and sensitivity of coastal resources within a given area. The ability of coastal communities to effectively adapt to climate change will depend greatly on their ability to develop and implement feasible strategies that address unique local and regional factors. A wide variety of resources are available to assist coastal states in developing their approach to climate change adaptation. However, given the complex and variable nature of the U.S. coastline, it is unlikely that a single set of guidelines can adequately address the full range of adaptation needs at the local and regional levels. This panel seeks to address some of the unique local and regional issues facing coastal communities throughout the U.S. including anticipated physical, social, economic and environmental impacts, existing resources and guidelines for climate change adaptation, current approaches to climate change adaptation planning, and challenges and opportunities for developing adaptation strategies. (PDF contains 4 pages)
Resumo:
The University of Hawaii Sea Grant College Program (UHSG) in partnership with the Hawaii Department of Land and Natural Resources (DLNR), Office of Conservation and Coastal Lands (OCCL) is developing a beach and dune management plan for Kailua Beach on the eastern shoreline of Oahu. The objective of the plan is to develop a comprehensive beach management and land use development plan for Kailua Beach that reflects the state of scientific understanding of beach processes in Kailua Bay and abutting shoreline areas and is intended to provide long-term recommendations to adapting to climate change including potential coastal hazards such as sea level rise. The development of the plan has lead to wider recognition of the significance of projected sea level rise to the region and provides the rational behind some of the land use conservation strategies. The plan takes on a critical light given global predictions for continued, possibly accelerated, sea-level rise and the ongoing focus of intense development along the Hawaiian shoreline. Hawaii’s coastal resource managers are faced with the daunting prospect of managing the effects of erosion while simultaneously monitoring and regulating high-risk coastal development that often impacts the shoreline. The beach and dune preservation plan is the first step in a more comprehensive effort prepare for and adapt to sea level rise and ensure the preservation of the beach and dune ecosystem for the benefit of present and future generations. The Kailua Beach and Dune Management plan is intended to be the first in a series of regional plans in Hawaii to address climate change adaptation through land use planning. (PDF contains 3 pages)
Resumo:
The Quedan and Rural Credit Guarantee Corporation (Quedancor) of the Philippine Department of Agriculture has the critical responsibility of providing and improving credit assistance to fishers, it also has the task of helping its beneficiaries meet the repayment obligations of their loans. One reason for defaults can be attributed to the devastating impact of natural calamities. Schemes in place are still insufficient to help safeguard lending programs and operations from non-repayment of loans due to production losses and damages to personal properties.(PDF contains 5 pages) Natural calamities include the uncertainties and vagaries of weather and climate that bring about typhoons, floods, and drought; earthquakes; volcanic eruption as well as pests and diseases that affect the productivity of fisheries. When natural calamities occur, small fishers are unable to pay their loans from Quedancor, moreover they have difficulty renewing their loan applications from Quedancor or accessing credit from other sources. Failure to access credit could disable them to continue venture on fishing activities and could eventually jeopardize the welfare of their entire household. The inability of creditors to pay their loans and meet their obligations also impair, to a large extent, the financial operation and viability of the lending institutions. Risk management schemes currently employed include price stabilization measures, targeted relief` to typhoons and drought victims, and crop insurance systems, to name a few. Some of these schemes are becoming very expensive to implement. Moreover, they fail to enable fishers regain sufficient resources so that they may continue production.
Resumo:
Coastal communities throughout the United States have dealt with the devastating effects of storms for centuries, however today’s threats are greater due to three factors. First, the population along the coastline has grown, and is projected to increase.i Additionally, past land use management decisions in the coastal zone have rarely led to the greatest protection from threats. Finally, climate change is predicted to affect coastal areas by accelerating current sea level rise rates and possibly increasing storm intensity.ii These factors compounded together mean that coastal communities are facing a very dangerous situation that threatens economies and human life. (PDF contains 4 pages)
Resumo:
Despite an increasing literary focus on climate change adaptation, the facilitation of this adaptation is occurring on a limited basis (Adger et al. 2007) .This limited basis is not necessarily due to inability; rather, a lack of comprehensive cost estimates of all options specifically hinders adaptation in vulnerable communities (Adger et al. 2007). Specifically the estimated cost of the climate change impact of sea-level rise is continually increasing due to both increasing rates and the resulting multiplicative impact of coastal erosion (Karl et al., 2009, Zhang et al., 2004) Based on the 2007 Intergovernmental Panel on Climate Change report, minority groups and small island nations have been identified within these vulnerable communities. Therefore the development of adaptation policies requires the engagement of these communities. State examples of sea-level rise adaptation through land use planning mechanisms such as land acquisition programs (New Jersey) and the establishment of rolling easements (Texas) are evidence that although obscured, adaptation opportunities are being acted upon (Easterling et al., 2004, Adger et al.2007). (PDF contains 4 pages)
Resumo:
As the impacts and potential of climate change are realized at the governance level, states are moving towards adaptation strategies that include greater regulatory restrictions on development within coastal zones. The purpose of this paper is to outline the impacts of existing and planned regulatory mechanisms on the Fifth Amendment to the United States Constitution, which prevents the government taking of private property for public use without just compensation. A short history of regulatory takings is explained, and the potential legal issues surrounding mitigation and adaptation measures for coastal communities are discussed. The goal is to gain an understanding of the legal issues that must be resolved by governments to effectively deal with regulatory takings claims as coastal mitigation and adaptation plans are implemented. (PDF contains 3 pages)
Resumo:
Coastal managers need accessible, trusted, tailored resources to help them interpret climate information, identify vulnerabilities, and apply climate information to decisions about adaptation on regional and local levels. For decades, climate scientists have studied the impacts that short term natural climate variability and long term climate change will have on coastal systems. For example, recent estimates based on Intergovernmental Panel on Climate Change (IPCC) warming scenarios suggest that global sea levels may rise 0.5 to 1.4 meters above 1990 levels by 2100 (Rahmstorf 2007; Grinsted, Moore, and Jevrejeva 2009). Many low-lying coastal ecosystems and communities will experience more frequent salt water intrusion events, more frequent coastal flooding, and accelerated erosion rates before they experience significant inundation. These changes will affect the ways coastal managers make decisions, such as timing surface and groundwater withdrawals, replacing infrastructure, and planning for changing land use on local and regional levels. Despite the advantages, managers’ use of scientific information about climate variability and change remains limited in environmental decision-making (Dow and Carbone 2007). Traditional methods scientists use to disseminate climate information, like peer-reviewed journal articles and presentations at conferences, are inappropriate to fill decision-makers’ needs for applying accessible, relevant climate information to decision-making. General guides that help managers scope out vulnerabilities and risks are becoming more common; for example, Snover et al. (2007) outlines a basic process for local and state governments to assess climate change vulnerability and preparedness. However, there are few tools available to support more specific decision-making needs. A recent survey of coastal managers in California suggests that boundary institutions can help to fill the gaps between climate science and coastal decision-making community (Tribbia and Moser 2008). The National Sea Grant College Program, the National Oceanic and Atmospheric Administration's (NOAA) university-based program for supporting research and outreach on coastal resource use and conservation, is one such institution working to bridge these gaps through outreach. Over 80% of Sea Grant’s 32 programs are addressing climate issues, and over 60% of programs increased their climate outreach programming between 2006 and 2008 (National Sea Grant Office 2008). One way that Sea Grant is working to assist coastal decision-makers with using climate information is by developing effective methods for coastal climate extension. The purpose of this paper is to discuss climate extension methodologies on regional scales, using the Carolinas Coastal Climate Outreach Initiative (CCCOI) as an example of Sea Grant’s growing capacities for climate outreach and extension. (PDF contains 3 pages)
Resumo:
The nature and extent of morphological variation within populations of Gammarus duebeni are examined. The exceptional tolerance of G. duebeni to salinities that encompass three orders of magnitude was known in the 19th Century, and has attracted considerable attention from physiologists and ecologists in the 20th Century, including the likelihood that populations in freshwater are distinct from those living in more saline environments. It is concluded that gradual evolution into discrete and readily distinguished subspecies is currently underway, eventually producing several new species in freshwater and saline habitats.
Resumo:
This translation includes selected passages of a longer paper on Mastigophora and Rhizopoda found in saline lakes Weissovo and Repnoie. The translation focuses on describing taxonomy and morphology of Ochromonas species and Pedinella. Plates and figures of the original paper are not included in the translation.
Resumo:
Members of the family Gammaridae are very closely interrelated. There arises the question as to how far they also differ amongst themselves through physiological characteristics. Comparative respiratory and physiological experiments were made on the five euryhaline species Gammarus locusta, G. oceanicus, G. salinus, G. zaddachi and G. duebeni. The respiratory measurements carried out within the framework of this experiment were occupied with the relationships between oxygen consumption and body size depending on salinity. They also had the object of determing the variations in metabolic intensity after an abrupt change in the salt content of the external medium, and to establish the period of time for the process of adaptation. As the experiments were carried out polarographically in a testing plant with continuous flow-through, and the method which was applied permitted continuous recording over prolonged intervals, there could also be carried out comparisons between metabolism at rest and under activity, and the alterations of oxygen consumption during the process of moulting could be measured.
Resumo:
The authors have developed the method used by Pianet and Le Hir (Doc.Sci.Cent. ORSTOM Pointe-Noire, 17, 1971) for the study of albacore (Thunnus albacares) in the Pointe-Noire region. The method is based on the fact that the ratio between unit of effort and number of fish for two fishing gears is equal to the ratio of their catchability coefficients.
Resumo:
The feasibility of semi-intensive culture of Penaeus monodon in low saline environment was investigated by comparing the growth and production in low (0.16-6.52 ppt) and high (4.60-19.42 ppt) saline areas at two stocking densities (10.5 and 16 individuals/m super(2)). After 135 days of culture, yield of shrimp in low and high stocking densities was 1563.37 kg/ha and 2274 kg/ha, respectively, in low saline ponds, and 1173.00 and 1974.00 kg/ha, respectively in high saline ponds. Food conversion ratio (FCR, 1.31-1.58) and specific growth rate (SGR 21.04-21.19%) were higher in low saline ponds as compared to high saline ponds (FCR, 1.35-1.68; SGR, 19.22-19.88%). Growth of shrimp was satisfactory in low saline ponds even when salinity decreased after 60 days of culture to almost freshwater level (0.16 ppt) indicating the variability of semi-intensive culture of P. monodon in low saline environment.