2 resultados para SAMALL ANGLE SCATTERING

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, phase angle (the ratio of resistance and reactance of tissue to applied electrical current) is presented as a possible new method to measure fish condition. Condition indices for fish have historically been based on simple weight-at-length relationships, or on costly and timeconsuming laboratory procedures that measure specific physiological parameters. Phase angle is introduced to combine the simplicity of a quick field-based measurement with the specificity of laboratory analysis by directly measuring extra- and intracellular water distribution within an organism, which is indicative of its condition. Phase angle, which can be measured in the field or laboratory in the time it takes to measure length and weight, was measured in six species of fish at different states (e.g., fed vs. fasted, and postmortem) and under different environmental treatments (wild vs. hatchery, winter vs. spring). Phase angle reflected different states of condition. Phase angles <15° indicated fish in poor condition, and phase angles >15° indicated fish that were in better condition. Phase angle was slightly affected by temperatures (slope = – 0.19) in the 0–8°C range and did not change in fish placed on ice for <12 hours. Phase angle also decreased over time in postmortem fish because of cell membrane degradation and subsequent water movement from intra- to extracellular (interstitial) spaces. Phase angle also reflected condition of specific anatomical locations within the fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sportfishing in southern California is a huge industry with annual revenues totaling many billions of dollars. However, the stocks of lingcod and six rockfish species have been declared overfished by the Pacific Fisheries Management Council. As part of a multifaceted fisheries management plan, marine conservation areas, covering many million square nautical miles, have been mandated. To monitor the recovery of the rockfish stocks in these areas, scientists are faced with the following challenges: 1) multiple species of rockfish exist in these areas; 2) the species reside near or on the bottom at depths of 80 to 300 m; and 3) they are low in numerical density. To meet these challenges, multifrequency echosounders, multibeam sonar, and cameras mounted on remotely operated vehicles are frequently used (Reynolds et al., 2001). The accuracy and precision of these echosounder results are largely dependent upon the accuracy of the species classification and target strength estimation (MacLennan and Simmonds, 1992).