2 resultados para SACCHAROMYCES-CEREVISIAE
em Aquatic Commons
Resumo:
Two Isocaloric Isoproteic 30% crude protein diets were formulated for Clariid catfish and Tilapia with wheat grain starch (WGS) and cassava tuber starch (CTS) incorporated at 10 percent as binding agents. Saccharomyces cerevisiae was included at 2% as floating additive. The water stability, nutrient retention and flotation of pelleted feeds were observed for 60 minutes. There were generally decreasing trends in stability and retention at increasing time of immersion in water. The lipid retention was higher (P>0.05) than proteins in both diets. WGS diet was better (P>0.05) than CTS diet in flotation, which has attributed to the presence of gluten protein in wheat products. It is envisaged that a break through in floating feed development in Nigeria aquaculture would save the Nigeria economy from extruded (floating) feed importation
Resumo:
Prebiotics are non-digestible food ingredients that profitably affect the host by selectively stimulating the growth and /or activation of one or a limited number of bacteria in the intestine that can enhance host health status. Immunoster (IS) and Immunowall (IW) are prebiotics and immunostimulants derived from the outer cell wall of brewers yeast, Saccharomyces cerevisiae. These substances contain MOS and �-glucans. After a four-week acclimatization period to rearing conditions and basal diet, 450 farmed great sturgeon juveniles weighing 95.58 ± 9.38 g were randomly distributed into 15 fiberglass tanks (2 × 2 × 0.53 m) in five treatments (Control, IS 1%, IW 1%, IS 3%, and IW 3%) in three replicates (completely randomized design) and kept at a density of 30 fish per tank for a period of 8 weeks at water temperature 20.55 ± 5.11ºC, dissolved oxygen 6.73 ± 0.35 mg L-1 and pH 7.92 ± 0.09. IS and IW were added at two levels of 1% and 3% to the basal diet in place of cellulose, except the control. At the beginning, in the middle and at the end of the trial, carcass analysis was done to determine the moisture, protein, fat, ash, and total carbohydrate. Also, blood samples were collected to measure hematological, biochemical and immune indices. At the end of the trial, final weight, final length, body weight increase (BWI), specific growth rate (SGR), average daily growth (ADG), protein efficiency ratio (PER), feed conversion ratio (FCR), and condition factor (CF) in fish fed on IS and IW in both levels 1% and 3% showed some differences. These differences were significant in IS 3% and IW 1% and 3% compared with the control (P<0.05). HSI showed no significant difference (P>0.05) and survival rate was 100% in all treatments. Crude protein of carcass in fish fed on IS and IW at 1% and 3% showed an increase in comparison with the control. There was significant difference between IS 3% and the control in crude protein of carcass (P<0.05). Fish fed on IS and IW at 1% and 3% showed various results in hematological and biochemical factors. It was observed significant difference in MCV between IW 1% and IS 3% compared with the control (P<0.05). Although there was an increase in values of hematocrit, hemoglobin (except IS 1%), WBC (except IW 3%), MCH, neutrophil, total protein, albumin (except IS 3%), K+, and lysozyme in fish fed on IS and IW compared with the control, it was no significant (P>0.05). The maximum count of WBC and the highest value of Ca2+ were seen in IW 1%. The maximum count of lymphocyte, the highest values of total protein, albumin and IgM were recorded in IW 3%. IS 1% had the maximum count of neutrophil and the highest concentration of lysozyme. Based on obtained results, it can be declared that IS and IW at two levels of 1% and 3% can enhance growth performance and feed efficiency and also improve some hematological, biochemical, and immune indices in farmed great sturgeon juveniles.