25 resultados para Rolling Meadows
em Aquatic Commons
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Though knowledge of fire occurrence and weather pattern relationships has been used for many years by land managers in, for instance, prescribed fire planning, understanding of the relationship between Holocene climates and fire is just beginning to be investigated. We are investigating this relationship in a major mountain range in California, examining charcoal and pollen content in sediments of montane meadows to compare paleo-fire and paleo-vegetation (thus, climate) sequences for the Holocene.
Resumo:
We evaluated four methods to control smooth cordgrass (Spartina alterniflora Loisel), hereafter spartina, in Willapa Bay, Washington: mowing, mowing plus herbicide combination, herbicide only for clones, and aerial application of herbicide for meadows. (PDF has 7 pages.)
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
Despite an increasing literary focus on climate change adaptation, the facilitation of this adaptation is occurring on a limited basis (Adger et al. 2007) .This limited basis is not necessarily due to inability; rather, a lack of comprehensive cost estimates of all options specifically hinders adaptation in vulnerable communities (Adger et al. 2007). Specifically the estimated cost of the climate change impact of sea-level rise is continually increasing due to both increasing rates and the resulting multiplicative impact of coastal erosion (Karl et al., 2009, Zhang et al., 2004) Based on the 2007 Intergovernmental Panel on Climate Change report, minority groups and small island nations have been identified within these vulnerable communities. Therefore the development of adaptation policies requires the engagement of these communities. State examples of sea-level rise adaptation through land use planning mechanisms such as land acquisition programs (New Jersey) and the establishment of rolling easements (Texas) are evidence that although obscured, adaptation opportunities are being acted upon (Easterling et al., 2004, Adger et al.2007). (PDF contains 4 pages)
Resumo:
Since 1975 the wildlife interest of the Somerset Levels and Moors have been assessed. Detailed information has been obtained on the conservation interest of meadows, breeding and wintering bird populations and the botany of aquatic habitats (rhynes). Little work to date has been carried out on the terrestrial and aquatic invertebrate fauna. The prime aim of this survey was to sample a wide variety of rhynes in order to obtain information on the nature and distribution of aquatic invertebrates.
Resumo:
To understand harbor seal social and mating strategies, I examined site fidelity, seasonal abundance and distribution, herd integrity, and underwater behavior of individual harbor seals in southern Monterey Bay. Individual harbor seals (n = 444) were identified by natural markings and represented greater than 80% of an estimated 520 seals within this community. Year to year fidelity of individual harbor seals to southern Monterey Bay coastline was 84% (n = 388), and long-term associations (>2 yrs) among individuals were common (>40%). Consistent with these long-term associations, harbor seals were highly social underwater throughout the year. Underwater social behavior included three primary types: (1) visual and acoustic displays, such as vocalizing, surface splashing, and bubble-blowing; (2) playful or agonistic social behavior such as rolling, mounting, attending, and biting; and (3) signal gestures such as head-thrusting, fore-flipper scratch~ng, and growling. Frequency of these types of behavior was related to seal age, gender, season, and resource availability. Underwater behavior had a variety of functions, including promotion of learning and social development, reduction of aggression and preservation of social bonds by maintaining social hierarchy, and facilitation of mate selection during breeding season. Social behavior among adult males was significantly correlated with vocalization characteristics (r = 0.99, X2 = 37.7, p = 0.00087), indicating that seals may assess their competition based on underwater vocalization displays and adopt individual strategies for attracting females during breeding season based on social status. Individual mating strategies may include defending underwater territories, using scramble tactics, and developing social alliances. (PDF contains 105 pages)
Resumo:
Yorkshire Water Services (YWS) are currently granted a Time Limited Licence (TLL) for abstraction at Kilgram Bridge which is due for renewal in 1999. The Environment. Agency requires information on fish populations with regards to drought conditions and any possible effects that abstraction may have when considering licence renewal. In' order to evaluate any effects of drought and abstraction a three year study was instigated to examine fish populations. Surveys were conducted at nine main River Ure sites and two tributaries in which the triennial rolling programme formed the basis of site selection. Multi-method sampling techniques were carried out at several sites in order to evaluate capture efficiency. High densities of brown trout juveniles were observed in the tributaries with an indication that fish had become crowded as a result of low flows. Recruitment of brown trout in the tributaries was not directly related to flow levels in the main R. Ure. However, it is concluded that salmonids are at risk during drought flows and high temperatures from increased susceptibility to disease, predation, poor water quality and the direct lethal effect of high temperatures in shallow water.
Resumo:
The basis for undertaking this study was to examine factors and potential impacts affecting fish and fishing in relation to low flow drought conditions and what other impacts may arise as a result of further reduced flows resulting from abstraction. The study formed the basis of a three year project to concentrate on effects relating to potable water abstractions at Moor Monkton by YWS. To fully evaluate the possible effects on fisheries the study set out to encompass fish population surveys from fry to adult stock, analysis of angler catch data, reports from anglers and river reports from Environment Agency Fisheries staff. In order to evaluate any effects of drought and abstraction a three year study was instigated to examine fish populations. Fish population surveys were conducted at six sites in which the triennial rolling programme formed the basis of site selection. Multi-method sampling techniques were carried out at several sites in order to evaluate capture efficiency. Roach were prolific above the weir at Linton-on-Ouse, with gudgeon, perch and small bream also well represented. Roach dominated catches on the R.Ouse below Linton, with perch and bleak also relatively abundant. Low flows were not thought to be directly correlated to successful recruitment of coarse fish, rather the associated high temperatures during drought conditions showing a strong positive effect with most species exhibiting growth rates above their long-term average. At this stage in the study there are no clear indications that the drought has caused any deleterious effects to coarse fish populations or marked changes in species composition, with evidence of good recruitment by several species, indicating that the higher temperatures have generally been beneficial to recruitment. However, the indication that dace did not benefit as well as other coarse fish under these conditions may suggest some species are affected more than others. The successful strong recruitment of most coarse fish suggests that, in future, fisheries will be supported by the 1995 year-class.
Resumo:
Zostera marina is a member of a widely distributed genus of seagrasses, all commonly called eelgrass. The reported distribution of eelgrass along the east coast of the United States is from Maine to North Carolina. Eelgrass inhabits a variety of coastal habitats, due in part to its ability to tolerate a wide range of environmental parameters. Eelgrass meadows provide habitat, nurseries, and feeding grounds for a number of commercially and ecologically important species, including the bay scallop, Argopecten irradians. In the early 1930’s, a marine event, termed the “wasting disease,” was responsible for catastrophic declines in eelgrass beds of the coastal waters of North America and Europe, with the virtual elimination of Z. marina meadows in the Atlantic basin. Following eelgrass declines, disastrous losses were documented for bay scallop populations, evidence of the importance of eelgrass in supporting healthy scallop stocks. Today, increased turbidity arising from point and non-point source nutrient loading and sediment runoff are the primary threats to eelgrass along the Atlantic coast and, along with recruitment limitation, are likely reasons for the lack of recovery by eelgrass to pre-1930’s levels. Eelgrass is at a historical low for most of the western Atlantic with uncertain prospects for systematic improvement. However, of all the North American seagrasses, eelgrass has a growth rate and strategy that makes it especially conducive to restoration and several states maintain ongoing mapping, monitoring, and restoration programs to enhance and improve this critical resource. The lack of eelgrass recovery in some areas, coupled with increasing anthropogenic impacts to seagrasses over the last century and heavy fishing pressure on scallops which naturally have erratic annual quantities, all point to a fishery with profound challenges for survival.
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
Suction-cup-attached VHF radio transmittes were deployed on belugas, Delphinapterus leucas, in Cook Inlet, Alaska, in 1994 and 1995 to characterize the whales' surfacing behavior. Data from video recordings were also used to characterize behavior of undisturbed whales and whales actively pursued for tagging. Statistics for dive intervals (time between the midpoints of contiguous surfacings) and surfacing intevals (time at the surface per surfacing) were estimated. Operations took place on the tidal delta of the Susitna and Little Susitna Rivers. During the 2-yr study, eight whales were successfully tagged, five tags remained attached for >60 min, and data from these were used in the analyses. Mean dive interval was 24.1 sec (interwhale SD=6.4 sec, n=5). The mean surfacing interval, as determined from the duration of signals received from the radio transmitters, was 1.8 sec (SD=0.3 sec, n=125) for one of the whales. Videotaped behaviors were categorized as "head-lifts" or "slow-rolls." Belugas were more likely to head-lift than to slow-roll during vessel approaches and tagging attempts when compared to undisturbed whales. In undisturbed groups, surfacing intervals determined from video records were significantly different between head-lifting (average = 1.02 sect, SD=0.38 sed, n=28) and slow-rolling whales (average = 2.45 sec, SD=0.37 sec, n=106). Undisturbed juveniles exhibited shorter slow-roll surfacing intervals (average = 2.25 sec, SD=0.32 sec, n=36) than adults (average = 2.55 sec, SD=0.36 sec, n=70). We did not observe strong reactions by the belugas to the suction-cup tags. This tagging method shows promise for obtaining surfacing data for durations of several days.
Resumo:
This is the Cheshire Meres 1995, May – June Surveys Report from the National Rivers Authority, 1995. The report focuses on the surveys of ten Cheshire Meres in November 1994 and then again in May-June 1995 as part of a rolling program examining the water quality of this group of still waters. The ten meres surveyed were: Betley, Budworth, Combermere, Hatchmere, Oak mere, Pick mere, Redes, Rostheme, Tabley, and Tatton. This report discusses the results of the May-June survey before making a comparison between these and the November survey results. The section on results contains information about suspended solids (S.S.) and volatile suspended solids (V.S.S.); Nitrate and Nitrite; Ammonia; ortho-Phosphate; Silicate and Soluble reactive Silica; and total Phosphorus.
Resumo:
This is the Cheshire stillwaters. Summary results of 1997 data Oak Mere, Betley Mere and Marbury Big from the National Rivers Authority, June 1998. In May 1997, a Stillwaters meeting was held to discuss the way forward in stillwaters monitoring. It decided upon the establishment of a three year rolling programme, in which three stillwaters would be monitored three times a year, every third year. The stillwaters where chosen due to water quality (i.e potential polluted / sensitive waters), fisheries and ecological interests. The Still waters chosen for the first year (1997) were Oak Mere, Betley Mere and Marbury Big Mere. The surveys were aimed to produce a comprehensive study of the still water through monitoring a variety of parameters. Algal, zooplankton and water chemical samples were taken three times a year, (April, July and September). In addition, fisheries surveys were taken in July and marginal invertebrate surveys taken in September.
Resumo:
This is the Cheshire stillwaters. Summary results of September 1998 from the Environment Agency, 1998. In May 1997, a Stillwaters meeting was held to discuss the way forward in stillwaters monitoring. It decided upon the establishment of a three year rolling programme, in which three stillwaters would be monitored three times a year, every third year. Oak Mere, Tatton Park Mere and Hatch Mere were surveyed between the 29th - 30th September as part of the three year rolling programme. Betley Mere, Petty Pool, Scotman's Flash and Pearson's Flash were also surveyed. Surveys also included algal and zooplankton samples, which are to be analysed by APEM and presented in the end of year report. The section on results contains information about water column profile; and nutrients (chlorophyll a; Phaeophytin; Nitrate and Nitrite; Ammonia; ortho-Phosphate; Silicate; and total Phosphorus).