4 resultados para Role stress
em Aquatic Commons
Resumo:
The role of life-history theory in population and evolutionary analyses is outlined. In both cases general life histories can be analysed, but simpler life histories need fewer parameters for their description. The simplest case, of semelparous (breed-once-then-die) organisms, needs only three parameters: somatic growth rate, mortality rate and fecundity. This case is analysed in detail. If fecundity is fixed, population growth rate can be calculated direct from mortality rate and somatic growth rate, and isoclines on which population growth rate is constant can be drawn in a ”state space” with axes for mortality rate and somatic growth rate. In this space density-dependence is likely to result in a population trajectory from low density, when mortality rate is low and somatic growth rate is high and the population increases (positive population growth rate) to high density, after which the process reverses to return to low density. Possible effects of pollution on this system are discussed. The state-space approach allows direct population analysis of the twin effects of pollution and density on population growth rate. Evolutionary analysis uses related methods to identify likely evolutionary outcomes when an organism's genetic options are subject to trade-offs. The trade-off considered here is between somatic growth rate and mortality rate. Such a trade-off could arise because of an energy allocation trade-off if resources spent on personal defence (reducing mortality rate) are not available for somatic growth rate. The evolutionary implications of pollution acting on such a trade-off are outlined.
Resumo:
With the global proliferation of toxic Harmful Algal Bloom (HAB) species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic impacts of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as yet unidentified cellular functions is currently unknown.
Resumo:
Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.
Resumo:
This study was conducted to assay the effects of different levels of dietary vitamins C and E on growth indices and survival and resistance against thermal stress of rainbow trout (Oncorhynchus mykiss) in pond culture of Marzan abad from December 2011 to February 2011. Seven diets were supplemented. 300 fish with the average weight of 17 g were introduced to ponds for 60 days. The results showed that the highest and the lowest weight gain were in fish fed with diet containing 50 mg/kg vitamin C and E and 0 mg/kg vitamin C and E(control) , respectively. The highest and the lowest Feed Conversion Ratio (FCR) were measured in control and diet 50 mg/kg vitamin C and E. There is a significant difference in their treatments (P<0.05). Also, the lowest and highest amount of Weight Gain (WG) were observed in (E) treatment with 165.04% and 117.5% in control, the highest and lowest Specific Growth Rate (SGR), Protein Efficiency Ratio (PER), Condition Factor (CF) was found in control and treatment 50 mg/kg vitamin C and E, respectively(P<0.05). In conclusion vitamin C and E have an important role in enhancement of growth performance and feed efficiency of rainbow trout.The highest red blood cells were found in combined treatments and which the vitamin C was added.The highest RBC were found in E treatment(1.1×104 /mm3) and the lowest one in control (P˂0.05). Counting white blood cells also confirmed highest quantity in combined treatments with (69.83×104/mm3) and the lowest one (28.83×104 /mm3) in control. In conclusion these vitamins have a significant role in blood characteristics. Meantime, the resistance against termal stress was measured at the end of 60 days by facing fishes into 5 centigrade warmer water so consentration of Cortisol and Glucose measured for this reason.The lowest cortisol amount was measured in E treatment with 188.74 ng/ml and the highest was found in control(P<0.05). There was a significant difference in blood glucose consentration of fishes in F treatment with (78.66 mg/dl) and control with 136 mg/dl as a highest one(P<0.05).