17 resultados para Regional production circuits
em Aquatic Commons
Resumo:
A discussion is presented on the potential for fishery development in the Niger Delta region, considering engineering activities and food production potentials of the freshwater zone and immediate hinterland, the brackishwater mangrove swamps and the estuaries. An examination of current trends in the environment indicates that a possible solution to improved exploitation of the region lies in hydraulic engineering, the manipulation of environmental conditions through varying freshwater and seawater inputs so as to increase aquatic and wetland productivity
Resumo:
Small indigenous fish species (SIS) are an important source of essential macro- and micronutrients that can play an important role in the elimination of malnutrition and micronutrient deficiencies in the populations of many South and Southeast Asian countries. Of the 260 freshwater fish species in Bangladesh, more than 140 are classified as SIS and are an integral part of the rural Bangladeshi diet. As many SIS are eaten whole, with organs and bones, they contain high amounts of vitamins and minerals, including calcium, and iron and zinc. Some SIS, such as mola, are also rich in vitamin A. SIS are often cooked with vegetables and a little oil, so they contribute to the food diversity of the rural poor.SIS are recognized as a major animal-source food group, contributing to improved food and nutrition security and livelihoods of the people of South and Southeast Asia. The purpose of this workshop is to bring together policy makers, extension agents, researchers, non-governmental and development organizations to share knowledge about small fish, their contribution to better nutrition, production technologies, and strategies for wider dissemination of pond culture and wetland based-production and conservation technologies. The workshop is expected to generate ideas for further research and development of sustainable technologies for production, management and conservation of SIS for the benefit of the people of Bangladesh as well as the South and Southeast Asian region.
Resumo:
(4 pp.)
Resumo:
(4 p.)
Resumo:
(4 p.)
Resumo:
(4 p.)
Resumo:
(4 pp.)
Resumo:
(4 p.)
Resumo:
(4 pp.)
Resumo:
(4pp.)
Resumo:
(4 pp.)
Resumo:
(4 pp.)
Resumo:
(4pp.)
Resumo:
Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)
Resumo:
Horseshoe crab (Limulus polyphemus) is harvested commercially, used by the biomedical industry, and provides food for migrating shorebirds, particularly in Delaware Bay. Recently, decreasing crab population trends in this region have raised concerns that the stock may be insufficient to fulfill the needs of these diverse user groups. To assess the Delaware Bay horseshoe crab population, we used surplus production models (programmed in ASPIC), which incorporated data from fishery-independent surveys, fishery-dependent catch-per-unit-of-effort data, and regional harvest. Results showed a depleted population (B2003/=0.03−0.71) BMSY and high relative fishing mortality /FMSY=0.9−9.5). Future harvest (F2002strategies for a 15-year period were evaluated by using population projections with ASPICP software. Under 2003 harvest levels (1356 t), population recovery to BMSY would take at least four years, and four of the seven models predicted that the population would not reach BMSY within the 15year period. Production models for horseshoe crab assessment provided management benchmarks for a species with limited data and no prior stock assessment