14 resultados para Reconfigurable devices
em Aquatic Commons
Resumo:
The California Fish and Game Commission (Commission) has the authority to require one or any combination of Bycatch Reduction Device (BRD) types in the trawl fishery within California waters for Pacific ocean shrimp (Pandalus jordani), most commonly referred to as pink shrimp. The purpose of this report is to provide the Commission with the best available information about the BRDs used in the pink shrimp trawl fishery. The mandatory requirement for BRDs occurred in California in 2002, and in Oregon and Washington in 2003, resulting from an effort to minimize bycatch of overfished and quota managed groundfish species. Three types of BRDs currently satisfy the requirement for this device in the California fishery: 1) the Nordmøre grate (rigid-grate excluder); 2) soft-panel excluder; and 3) fisheye excluder; however, the design, specifications, and efficacy differ by BRD type. Although no data has been collected on BRDs directly from the California pink shrimp fishery, extensive research on the efficacy and differences among BRD types has been conducted by the Oregon Department of Fish and Wildlife (ODFW) since the mid-1990s. Rigid-grate excluders are widely considered to be the most effective of the three BRD types at reducing groundfish bycatch. Over 90 percent of the Oregon pink shrimp fleet use rigid-grate excluders. The majority of the current California pink shrimp fleet also uses rigid-grate excluders, according to a telephone survey conducted by the California Department of Fish and Game (Department) in 2007-2008 of pink shrimp fishermen who have been active in the California fishery in recent years. Hinged rigid-grate excluders have been developed in recent years to reduce the bending of the BRD on vessels that employ net reels to stow and deploy their trawl nets, and they have been used successfully on both single- and double-rig vessels in Oregon. Soft-panel excluders have been demonstrated to be effective at reducing groundfish bycatch, although excessive shrimp loss and other problems have also been associated with this design. Fisheye excluders have been used in the California fishery in the past, but they were disapproved in Oregon and Washington in 2003 because they were found to be less effective at reducing groundfish bycatch than other designs. The reputation of the United States west coast pink shrimp fishery as one of the cleanest shrimp fisheries in the world is largely attributed to the effectiveness of BRDs at reducing groundfish bycatch. Nevertheless, BRD research and development is still a relatively new field and additional modifications and methods may further reduce bycatch rates in the pink shrimp fishery.(PDF contains 12 pages.)
Resumo:
Aspects of the Nigerian fishing industry are outlined to explain the concept of fishing systems viability which is often influenced by a combination of factors including biological productivity, as well as technical, economic and social factors. The productivity of the aquatic environments can be increased by the construction and installation of artificial reefs and fish aggregating devices. These man-made structures provide shelters, food and breeding grounds for fin fish and shell fish. The habitat enhancement techniques are appropriate, efficient, cheap and simple strategic options for increase in fish production. Recommendations for effective utilization and long term management are outlined.
Resumo:
Trawling was conducted in the Charleston, South Carolina, shipping channel between May and August during 2004–07 to evaluate loggerhead sea turtle (Caretta caretta) catch rates and demographic distributions. Two hundred and twenty individual loggerheads were captured in 432 trawling events during eight sampling periods lasting 2–10 days each. Catch was analyzed by using a generalized linear model. Data were fitted to a negative binomial distribution with the log of standardized sampling effort (i.e., an hour of sampling with a net head rope length standardized to 30.5 m) for each event treated as an offset term. Among 21 variables, factors, and interactions, five terms were significant in the final model, which accounted for 45% of model deviance. Highly significant differences in catch were noted among sampling periods and sampling locations within the channel, with greatest catch furthest seaward consistent with historical observations. Loggerhead sea turtle catch rates in 2004–07 were greater than in 1991–92 when mandatory use of turtle excluder devices was beginning to be phased in. Concurrent with increased catch rates, loggerheads captured in 2004–07 were larger than in 1991–92. Eighty-five percent of loggerheads captured were ≤75.0 cm straight-line carapace length (nuchal notch to tip of carapace) and there was a 3.9:1 female-to-male bias, consistent with limited data for this location two decades earlier. Only juvenile loggerheads ≤75.0 cm possessed haplotypes other than CC-A01 or CC-A02 that dominate in the region. Six rare and one un-described haplotype were predominantly found in June 2004.
Resumo:
Previous studies indicate that elasmobranch fishes (sharks, skates and rays) detect the Earth’s geomagnetic field by indirect magnetoreception through electromagnetic induction, using their ampullae of Lorenzini. Applying this concept, we evaluated the capture of elasmobranchs in the presence of permanent magnets in hook-and-line and inshore longline fishing experiments. Hooks with neodymium-iron-boron magnets significantly reduced the capture of elasmobranchs overall in comparison with control and procedural control hooks in the hook-and-line experiment. Catches of Atlantic sharpnose shark (Rhizoprionodon terraenovae) and smooth dogfish (Mustelus canis) were signif icantly reduced with magnetic hook-and-line treatments, whereas catches of spiny dogfish (Squalus acanthias) and clearnose skate (Raja eglanteria) were not. Longline hooks with barium-ferrite magnets significantly reduced total elasmobranch capture when compared with control hooks. In the longline study, capture of blacktip sharks (Carcharhinus limbatus) and southern stingrays (Dasyatis americana) was reduced on magnetic hooks, whereas capture of sandbar shark (Carcharhinus plumbeus) was not affected. Teleosts, such as red drum (Sciaenops ocellatus), Atlantic croaker (Micropogonias undulatus), oyster toadfish (Opsanus tau), black sea bass (Centropristis striata), and the bluefish (Pomatomas saltatrix), showed no hook preference in either hook-and-line or longline studies. These results indicate that permanent magnets, although eliciting species-specific capture trends, warrant further investigation in commercial longline and recreational fisheries, where bycatch mortality is a leading contributor to declines in elasmobranch populations.
Resumo:
Satellite telemetry is a common tool for examining sea turtle movements, and many research programs have successfully tracked adults. Relatively short satellite track durations recorded for juvenile Kemp’s ridley sea turtles, Lepidochelys kempii, in the northwestern Gulf of Mexico raised questions regarding premature transmission loss. We examined interactions between juvenile sea turtles outfitted with platform terminal transmitters (PTT’s) and turtle excluder devices (TED’s) and the potential for transmission loss due to this interaction. A pilot study was conducted with eight 34-month-old, captive-reared loggerhead sea turtles, Caretta caretta; a larger trial the following year used twenty 34-month-olds. Half of the turtles in each trial were outfitted with dummy PTT’s (8×4×2 cm), and all turtles were sent through a trawl equipped with a bottom-opening Super-Shooter TED. No apparent damage was sustained by any PTT, but four of five PTT-outfitted loggerheads encountering the TED carapace-first exhibited increased escape times when the PTT wedged between the TED deflector bars (10.2 cm apart). Overall, 15 loggerheads (54%) impacted the TED carapace-first. Attachment of PTT’s to smaller sea turtles may slow or, in worst cases, inhibit escape from TED’s. Likewise, loose or poorly secured PTT’s could impede escape or be shed during such an interaction. Researchers tracking small turtles in or near regions with trawling activity should consider PTT size and shape and the combined PTT/adhesive profile to minimize potentially detrimental interactions with TED’s.
Resumo:
Fishes are widely known to aggregate around floating objects, including flotsam and fish aggregating devices (FADs).The numbers and diversity of juvenile fishes that associated with floating objects in the nearshore waters of the eastern tropical Pacific were recording by using FADs as an experimental tool. The effects of fish removal, FAD size, and the presence or absence of a fouling community at the FAD over a period of days, and the presence of prior recruits over a period of hours were evaluated by using a series of experiments. The removal of FAD-associated fish assemblages had a significant effect on the number of the dominant species (Abudefduf troschelii) in the following day’s assemblage compared to FADs where the previous day’s assemblage was undisturbed; there was no experimental effect on combined species totals. Fishes do, however, discriminate among floating objects, forming larger, more species-rich assemblages around large FADs compared to small ones. Fishes also formed larger assemblages around FADs possessing a fouling biota versus FADs without a fouling biota, although this effect was also closely tied to temporal factors. FADs enriched with fish accumulated additional recruits more quickly than FADs that were not enriched with fish and therefore the presence of prior recruits had a strong, positive effect on subsequent recruitment. These results suggest that fish recruitment to floating objects is deliberate rather than haphazard or accidental and they sup-port the hypothesis that flotsam plays a role in the interrelationship between environment and some juvenile fishes. These results are relevant to the use of FADs for fisheries, but emphasize that further research is necessary for applied interests.
Resumo:
Two bycatch reduction devices (BRDs)—the extended mesh funnel (EMF) and the Florida fisheye (FFE)—were evaluated in otter trawls with net mouth circumferences of 14 m, 17 m, and 20 m and total net areas of 45 m2. Each test net was towed 20 times in parallel with a control net that had the same dimensions and configuration but no BRD. Both BRDs were tested at night during fall 1996 and winter 1997 in Tampa Bay, Florida. Usually, the bycatch was composed principally of finfish (44 species were captured); horseshoe crabs and blue crabs seasonally predominated in some trawls. Ten finfish species composed 92% of the total finfish catch; commercially or recreationally valuable species accounted for 7% of the catch. Mean finfish size in the BRD-equipped nets was usually slightly smaller than that in the control nets. Compared with the corresponding control nets, both biomass and number of finfish were almost always less in the BRD-equipped nets but neither shrimp number nor biomass were significantly reduced. The differences in proportions of both shrimp and finfish catch between the BRD-equipped and control nets varied between seasons and among net sizes, and differences in finfish catch were specific for each BRD type and season. In winter, shrimp catch was highest and size range of shrimp was greater than in fall. Season-specific differences in shrimp catch among the BRD types occurred only in the 14-m, EMF nets. Finfish bycatch species composition was also highly seasonal; each species was captured mainly during only one season. However, regardless of the finfish composition, the shrimp catch was relatively constant. In part as a result of this study, the State of Florida now requires the use of BRDs in state waters.
Resumo:
All five species of sea turtles in continental U.S. waters are protected under the Endangered Species Act of 1973 and the population sizes of all species remain well below historic levels. Shrimp trawling was determined to be the largest source of anthropogenic mortality of many of the species. As a mechanism to reduce the incidental catch of turtles in trawl nets, turtle excluder devices have been required intermittently in the shrimp fishery since 1987, and at all times since 1994. The expanded turtle excluder device (TED) regulations, implemented in 1994, were expected to reduce shrimp trawl capture of sea turtles by 97%. Recent evidence has indicated that the sizes of turtles stranding were not representative of the animals subjected to being captured by the shrimp trawlers. The purpose of our study was to compare the sizes of stranded sea turtles with the size of the TED openings. We compared the sizes of stranded loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp’s ridley (Lepidochelys kempii) sea turtles, the three species most commonly found stranded, to the minimum widths and heights of TED openings. We found that annually a large proportion of stranded loggerhead turtles (33–47%) and a small proportion of stranded green turtles (1–7%) are too large to fit through the required minimum-size TED openings. The continued high mortality of sea turtles caused by bottom trawling is reason for concern, especially for the northern subpopulation of loggerhead turtles, which currently is not projected to achieve the federal recovery goal of reaching and maintaining prelisting levels of nesting.