3 resultados para Random coefficient logit (RCL) model

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercial catch and effort data were fit to the Leslie model to estimate preexploitation abundance and the catchability coefficient of slipper lobster, Scyllarides squammosus, in the Northwestern Hawaiian Islands (NWHI). A single vessel fished for 34 consecutive days in the vicinity of Laysan Island and caught 126,127 total slipper lobster in 36,170 trap hauls. Adjusted catch of legal slipper lobster dropped from a high of 3.70 to 1.16 lobster per trap haul. Preexploitation abundance at Laysan Island was an estimated 204,000 legal slipper lobster, which was extrapolated to yield an estimate of 1.2 X 106 to 3.8 X 106 lobster for the entire NWHI slipper lobster fishery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A density prediction model for juvenile brown shrimp (Farfantepenaeus aztecus) was developed by using three bottom types, five salinity zones, and four seasons to quantify patterns of habitat use in Galveston Bay, Texas. Sixteen years of quantitative density data were used. Bottom types were vegetated marsh edge, submerged aquatic vegetation, and shallow nonvegetated bottom. Multiple regression was used to develop density estimates, and the resultant formula was then coupled with a geographical information system (GIS) to provide a spatial mosaic (map) of predicted habitat use. Results indicated that juvenile brown shrimp (<100 mm) selected vegetated habitats in salinities of 15−25 ppt and that seagrasses were selected over marsh edge where they co-occurred. Our results provide a spatially resolved estimate of high-density areas that will help designate essential fish habitat (EFH) in Galveston Bay. In addition, using this modeling technique, we were able to provide an estimate of the overall population of juvenile brown shrimp (<100 mm) in shallow water habitats within the bay of approximately 1.3 billion. Furthermore, the geographic range of the model was assessed by plotting observed (actual) versus expected (model) brown shrimp densities in three other Texas bays. Similar habitat-use patterns were observed in all three bays—each having a coefficient of determination >0.50. These results indicate that this model may have a broader geographic application and is a plausible approach in refining current EFH designations for all Gulf of Mexico estuaries with similar geomorphological and hydrological characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the study, the production efficiency of catfish in Cross River State was determined. Data was obtained from 120 fish farmers were randomly selected from Cross River Agricultural Zones, using a multistage random sampling technique. Multiple regression analysis model was the main tool of data analysis where different functions were tried. The results indicated that Cobb-Douglass production function had the best fit in explaining the relationship between output of catfish and inputs used, the coefficient of multiple determinant (R2 = 0.61) indicates that sixtyone percent of the variability in output of catfish is explained by the independent variables. The results also indicate that farmers’ educational level positively influence their level of efficiency in catfish production in the study area. The F-value of 16.427 indicates the overall significance of the model at 1 percent level, indicating that there is a significant linear relationship between the independent variables taken together and the yield of catfish produced in Cross River State. The marginal value products of fish pond size (farm size), labour and feed (diet) were N67.50, N 178.13 and N 728.00 respectively, while allocative efficiency for (farm size), labour and feed (diet) were (0.09 over utilized, 2.85 under utilized and 0.99 over utilized), respectively, there existed allocative in-efficiency, there is a high potential for catfish farmers to increase their yields and income. Based on the findings of this study, it is recommended that fish farmers should expand fish farms, improving on production efficiency and adopting new technologies. Regular awareness campaign about new technologies in fish farming should be embarked by extension agents to make fish farmers know the importance of adopting new technologies. KEYWORDS: Production efficiency, Catfish, Cobb-Douglass, Production function, Cross River State