64 resultados para Ramos, Guerreiro, 1915-1982
em Aquatic Commons
Resumo:
(PDF contains 34 pages.)
Resumo:
La presente lista bibliográfica complementa a la del primer número de la revista Biología Acuática editada por el Instituto de Limnología "Dr. Raúl A. Rinquelet" (ILPLA). (Document contains 24 pages)
Resumo:
The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)
Resumo:
This document is in Spanish. La Secretaría de Pesca, a través de la Direcci6n General de Informática, Estadística y Documentaci6n,presenta el ANUARIO ESTADISTICO correspondiente a 1982, con la informaci6n cuantitativa más relevante de las diversas fases que confo·rman la actividad pesquera nacional y la de los sectores que en ella participan, así como los principales indicadores pesqueros internacionales. El Fresente documento está integrado por trece capítulos: I. Capturas, II. Permisos, III. Embarcaciones, IV. Artes y EquiI-' os de Pesca, V. Industrialización, VI. Origen y Destino de loo productos Pesqueros, VII. Comercialización, VIII. Consumo, IX. Población, X. Capacitación, XI. Financiamiento, XII. Información Internacional de Pesca, XIII. Cuenta Nacional pesqu~ ra. Al final del documento se incluyen dos anexos, el Frimero presenta el índice detallado de cuadros y el segundo el glosario de términos. Catch statistics for Mexican waters 1982. (PDF has 482 pages.)
Resumo:
In this report, we present oceanographic results from VERTEX 3 Particle Interceptor Trap (PIT) experiment conducted off the western-coast of Mexico during October to November 1982. The oceanographic data presented here were obtained during three cruise legs by Moss Landing Marine Laboratory scientists aboard R/V Cayuse while the detailed chemical studies were done by other scientists aboard R/V Wecoma. Only the oceanographic data will be presented in this report. (PDF contains 82 pages)
Resumo:
We present data on ichthyoplankton distribution, abundance, and seasonality and supporting environmental information for four species of coastal pelagics from the family Carangidae: blue runner Caranx crysos, Atlantic bumper Chloroscombrus chrysurus, round scad Decapterus punctatus, and rough scad Trachurus lathami. Data are from 1982 and 1983 cruises off Louisiana sponsored by the Southeastern Area Monitoring and Assessment Program (SEAMAP). Bioprofiles on reproductive biology, early life history, meristics, adult distribution, and fisheries characteristics are also presented for these species. Maximum abundances of larval blue runner, Atlantic bumper, and round scad were found in July inside the 4O-m isobath, although during the rest of the cruises these species were rarely found together. Larval Atlantic bumper were captured in June and July only; blue runner in May, June, and July; and round scad in all seasons. Atlantic bumper larvae, concentrated mostly off western Louisiana, were by far the most abundant carangid in 1982 and 1983. Larval blue runner were the second most abundant summer-spawned carangid in 1982 and 1983, but their abundance and depth distribution varied considerably between years. Relative abundance of larval round scad off Louisiana was low, and they were captured only west of the Mississippi River delta, although they are reported to dominate carangid populations in the eastern Gulf of Mexico. Rough scad were primarily winter/spring and outer-shelf (40-182 m) spawners. They ranked third in overall abundance, but were the most abundant target carangid on the outer shelf. Ecological parameters such as surface salinity, temperature, and station depth are presented from capture sites for recently hatched larvae <2.5 mm notochord length, except round scad) as well as for all sizes of fish below 14 mm standard length. (PDF file contains 44 pages.)
Resumo:
We present data on ichthyoplankton distribution, abundance, and seasonality and supporting environmental information for four species of coastal pelagics from the family Clupeidae: round herring Etrumeus teres, scaled sardine Harengula jaguana, Atlantic thread herring Opisthonema oglinum, and Spanish sardine Sardinella aurita. Data are from 1982 and 1983 cruises across the northern Gulf of Mexico sponsored by the Southeastern Area Monitoring and Assessment Program (SEAMAP). This is the first such examination for these species on a multiyear and gulfwide scale. Bioproflles on reproductive biology, early life history, meristics, adult distribution, and fisheries characteristics are also presented for these species. During the summer, larval Atlantic thread herring and scaled and Spanish sardines were abundant on the inner shelf <40 m depth), but were rare or absent in deeper waters. Scaled sardine and thread herring were found virtually everywhere inner-shelf waters were sampled, but Spanish sardines were rare in the north-central Gulf. During 1982, larval Atlantic thread herring were the most abundant of the four target c1upeid species, whereas Spanish sardine were the most abundant during 1983. On the west Florida shelf, Spanish sardine dominated larval c1upeid populations both years. Scaled sardine larvae were the least abundant of the four species both years, but were still captured in 25% of inner-shelf bongo net collections. Round herring larvae, collected February-early June (primarily March-April), were abundant on the outer shelf (40-182 m depth) and especially off Louisiana. Over the 2-year period, outer-shelf mean abundance for round herring was 40.2 larvae/10 m2; inner-shelf mean abundances for scaled sardine, Atlantic thread herring, and Spanish sardine were 14.9, 39.2, and 41.9 larvae/l0 m2, respectively. (PDF file contains 66 pages.)
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was started by a proposal made during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program are desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communications and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 108 pages.)
Resumo:
Accurate and precise estimates of age and growth rates are essential parameters in understanding the population dynamics of fishes. Some of the more sophisticated stock assessment models, such as virtual population analysis, require age and growth information to partition catch data by age. Stock assessment efforts by regulatory agencies are usually directed at specific fisheries which are being heavily exploited and are suspected of being overfished. Interest in stock assessment of some of the oceanic pelagic fishes (tunas, billfishes, and sharks) has developed only over the last decade, during which exploitation has increased steadily in response to increases in worldwide demand for these resources. Traditionally, estimating the age of fishes has been done by enumerating growth bands on skeletal hardparts, through length frequency analysis, tag and recapture studies, and raising fish in enclosures. However, problems related to determining the age of some of the oceanic pelagic fishes are unique compared with other species. For example, sampling is difficult for these large, highly mobile fishes because of their size, extensive distributions throughout the world's oceans, and for some, such as the marlins, infrequent catches. In addition, movements of oceanic pelagic fishes often transect temperate as well as tropical oceans, making interpretation of growth bands on skeletal hardparts more difficult than with more sedentary temperate species. Many oceanic pelagics are also long-lived, attaining ages in excess of 30 yr, and more often than not, their life cycles do not lend themselves easily to artificial propagation and culture. These factors contribute to the difficulty of determining ages and are generally characteristic of this group-the tunas, billfishes, and sharks. Accordingly, the rapidly growing international concern in managing oceanic pelagic fishes, as well as unique difficulties in ageing these species, prompted us to hold this workshop. Our two major objectives for this workshop are to: I) Encourage the interchange of ideas on this subject, and 2) establish the "state of the art." A total of 65 scientists from 10 states in the continental United States and Hawaii, three provinces in Canada, France, Republic of Senegal, Spain, Mexico, Ivory Coast, and New South Wales (Australia) attended the workshop held at the Southeast Fisheries Center, Miami, Fla., 15-18 February 1982. Our first objective, encouraging the interchange of ideas, is well illustrated in the summaries of the Round Table Discussions and in the Glossary, which defines terms used in this volume. The majority of the workshop participants agreed that the lack of validation of age estimates and the means to accomplish the same are serious problems preventing advancements in assessing the age and growth of fishes, particularly oceanic pelagics. The alternatives relating to the validation problem were exhaustively reviewed during the Round Table Discussions and are a major highlight of this workshop. How well we accomplished our second objective, to establish the "state of the art" on age determination of oceanic pelagic fishes, will probably best be judged on the basis of these proceedings and whether future research efforts are directed at the problem areas we have identified. In order to produce high-quality papers, workshop participants served as referees for the manuscripts published in this volume. Several papers given orally at the workshop, and included in these proceedings, were summarized from full-length manuscripts, which have been submitted to or published in other scientific outlets-these papers are designated as SUMMARY PAPERS. In addition, the SUMMARY PAPER designation was also assigned to workshop papers that represented very preliminary or initial stages of research, cursory progress reports, papers that were data shy, or provide only brief reviews on general topics. Bilingual abstracts were included for all papers that required translation. We gratefully acknowledge the support of everyone involved in this workshop. Funding was provided by the Southeast Fisheries Center, and Jack C. Javech did the scientific illustrations appearing on the cover, between major sections, and in the Glossary. (PDF file contains 228 pages.)
Resumo:
The determination of relative connections between families and genera of Cladocera, necessary for the construction of their natural systems, must be based on various criteria, among them on the structure of the ephippia. Of particular interest is the study of the process of formation and structure of the ephippium in Macrothricidae, different representatives of which differ significantly among themselves according to this criterion. In this article are presented the results of an investigation of the features of formation of the ephippium in seven species of Macrothricidae and in the moinid Moina weismanni Ishikawa (Moinidae).
Resumo:
ENGLISH: SPANISH: La Comisión Interamericana del Atún Tropical funciona bajo la autoridad y dirección de un convenio establecido originalmente por la República de Costa Rica y los Estados Unidos de América. El convenio vigente desde 1950, está abierto a la afiliación de otros gobiernos cuyos ciudadanos pescan atún en el Pacífico oriental tropical. Bajo esta estipulación, Panamá se afilió en 1953, Ecuador en 1961, los Estados Unidos Mexicanos en 1964, Canadá en 1968, Japón en 1970, Francia y Nicaragua en 1973. Ecuador se retiró de la Comisión en 1968, México en 1978 y Costa Rica en 1979. Como se informó en el informe anual de la Comisión de 1978, la XXXVI reunión de la Comisión, convocada en Tokio (Japón) del 16 al 18 de octubre de 1978, fue suspendida sin haberse adoptado ninguna acción para fijar una cuota de atún aleta amarilla en 1979. La XL reunión de la Comisión fue convocada en La Jolla, California (EEUU) del 19 al 21 de octubre de 1982. (PDF contains 296 pages.)
Resumo:
Adjustment of experimental channels to give any specified pattern of water depth or velocity is complex and tedious because it involves a number of variables. Since some variables are not controllable and variables may interact, valve settings of the Grassholme channels were initially determined on an ad hoc basis to suit individual experiments. This method was used during 1982 but additional observations were made in order to gain more detailed understanding of the channel system and, as far as possible, to develop a guide to future short-cuts in attaining suitable channel settings for any given purpose. This report describes calibration of the Grassholme channels (using water of the Grassholme Reservoir) for the biological experiments of spring - summer 1982. The main variables that are discussed are valve turns and discharge and velocity and depth. It also seeks to establish relationships which will be of value in future managment of the channels for experimental purposes.